Chapter 7
Randomization

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI
I

FREIBURG

Randomized Quicksort

UNI

FREIBURG

Quicksort:

Sy <v % S, > v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in §;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;

Algorithm Theory, WS 2017/18 Fabian Kuhn

Randomized Quicksort Analysis

UNI

FREIBURG

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:

Let’s just count the number of comparisons

In the partitioning step, all n — 1 non-pivot elements have to be
compared to the pivot

Number of comparisons:

n —1 + #comparisons in recursive calls

If rank of pivot is 1
recursive calls withr — 1 and n — r elements

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Law of Total Expectation

UNI

FREIBURG

e Given arandom variable X and
 asetofevents A4, ..., Aj that partition ()

— E.g., for a second random variable Y, we could have
A ={weQ:Y(w) =i}

Law of Total Expectation
ZP(A) EX | A;] ZP(Y y) - E[X|Y =]

Example:
e X:outcome of rolling a die
e Ay ={Xiseven}, A; = {Xisodd}

Algorithm Theory, WS 2017/18 Fabian Kuhn

Randomized Quicksort Analysis

UNI
f

FREIBURG

Random variables:
e (:total number of comparisons (for a given array of length n)

* R:rank of first pivot
* (p, C,: number of comparisons for the 2 recursive calls

E[C] = n — 1+ E[C,] + E[C,]

Law of Total Expectation:

E[C] = Z P(R =) - E[C|R = r]
r=1

- 2 P(R=71)- (n—1+E[C,R = 7] + E[C,|R = r])
r=1

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Randomized Quicksort Analysis

UNI
f

FREIBURG

We have seen that:

E[C] = Z PR = 1) - (n— 1+ E[Cy|R = 7] + E[C,|R = r])
r=1

Define:
* T(n): expected number of comparisons when sorting n elements
E[C] =T(n)
E[C,IR=71]=T(r —1)
E[C/IR=r]=T(n—r)

Recursion:
n

1
T(n) =;E-(n—1+T(r—1)+T(n—r))
T(0) =T(1) = 0

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

UNI

Randomized Quicksort Analysis

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n

T(n)=Z%-(n—1+T(r—1)+T(n—r)), T(0)=0

r=1

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:

4_ n
T(n)Sn—1+—-fx1nxdx
n 1 \
— _x*Inx x?
jxnx X = 5 —4

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Alternative Analysis

Array tosort:[7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Comparisons

UNI

FREIBURG

 Comparisons are only between pivot and non-pivot elements

* Every element can only be the pivot once:
— every 2 elements can only be compared once!

* W.l.o.g.,, assume that the elements to sortare 1,2, ..., n

* Elementsi andj are compared if and only if eitheri orjisa
pivot before any element h:i < h < j is chosen as pivot
— i.e., iff i is an ancestor of j or j is an ancestor of i

P(comparison betw.i and j) :j 11

Algorithm Theory, WS 2017/18 Fabian Kuhn

10

Counting Comparisons

UNI

FREIBURG

Random variable for every pair of elements (i, j):

1, if there is a comparison between i and j
Xij — .
0, otherwise

Number of comparisons: X
i<j

* Whatis E[X]?

Algorithm Theory, WS 2017/18 Fabian Kuhn

11

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.
Proof:

* Linearity of expectation:
For all random variables X4, ..., X,, and all a4, ..., a,, € R,

E [zn: a; X;| = i a; E|X;].

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

UNI

Randomized Quicksort Analysis

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n—-1 n n—-1n—-i+1
E[X]‘ZEE 1 —2221
L L j-i+ 1 T k
=1 j=i+1 =1 k=2

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Quicksort: High Probability Bound

UNI
f

FREIBURG

 We have seen that the number of comparisons of randomized
quicksort is O(nlogn) in expectation.

 (Can we also show that the number of comparisons is

O (nlogn) with high probability?

 Recall:

On each recursion level, each pivot is compared once with
each other element that is still in the same “part”

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Counting Number of Comparisons

UNI

FREIBURG

 We looked at 2 ways to count the number of comparisons
— recursive characterization of the expected number
— number of different pairs of values that are compared

Let’s consider yet another way:
 Each comparison is between a pivot and a non-pivot

* How many times is a specific array element x compared as a
non-pivot?

Value x is compared as a non-pivot to a pivot once in every
recursion level until one of the following two conditions apply:

1. xischosen as a pivot
2. xisalone

Algorithm Theory, WS 2017/18 Fabian Kuhn

15

Successful Recursion Level

UNI
FREIBURG

* Consider a specific recursion level £

* Assume that at the beginning of recursion level £, element x is
in a sub-array of length K, that still needs to be sorted.

* If x has been chosen as a pivot before level £, we set K, .= 1

Definition: We say that recursion level £ is successful for element

x iff the following is true:

2
Ko =1 or Kppqs5-Ky

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

Successful Recursion Level

UNI
FREIBURG

Lemma: For every recursion level £ and every array element x, it
holds that level £ is successful for x with probability at least 1/5,
independently of what happens in other recursion levels.

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Number of Successful Recursion Levels

UNI

FREIBURG

Lemma: If among the first £ recursion levels, at least logs, (1)
are successful for element x, we have K, = 1.

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn

18

Chernoff Bounds

UNI
f

FREIBURG

* LetXy,..., X, beindependent 0-1 random variables and define
pi = PX; =1).

* Consider the random variable X = }.7*, X;

+ We have u = E[X] = X1, E[X,] = 37, p;

Chernoff Bound (Lower Tail):

V6 >0: P(X < (1—8)p) < e 912

Chernoff Bound (Upper Tail):

e’ H
V> 0: PX>A4+d)p) < <(1 n 6)1+6) T e—8%1/3

holdsfor 6 < 1

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Chernoff Bounds, Example

UNI
f

FREIBURG

Assume that a fair coin is flipped n times. What is the probability
to have

1. lessthann/3 heads?

2. more than 0.51n tails?

3. lessthan™/, —+/c - nlnn tails?

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Proof of Chernoff Bound

* Independent Bernoulli random variables X4, X,, ..., X,
* P(X;=1) 2 py, X = 2imq Xy p = 2j=q Pi = E[X]

Chernoff Lower Tail: P(X < (1 — &)p) < e 9°1/2

Recall
* Markov Inequality: Given non-negative rand. var. Z = 0

E[Z]
vt > 0: P(Z>t)<T

* Independent random variables Y, Z:
E|Y - Z] = E[Y] : E[Z]

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Proof of Chernoff Bound

FREIBURG

* P(X;=1) =2 p;, X = Xi=1 Xi, b= Xi=1 0i = E[X]
Chernoff Lower Tail: P(X < (1 — &)u) < e~ #/2
Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Proof of Chernoff Bound

FREIBURG

* P(X;=1) =2 p;, X = Xi=1 Xi, b= Xi=1 0i = E[X]
Chernoff Lower Tail: P(X < (1 — &)u) < e~ #/2
Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Proof of Chernoff Bound

FREIBURG

* P(X;=1) =2 p;, X = Xi=1 Xi, b= Xi=1 0i = E[X]
Chernoff Lower Tail: P(X < (1 — &)u) < e~ #/2
Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Number of Comparisons for x

Lemma: For every array element x, with high probability, as a
non-pivot, x is compared to a pivot at most O (log n) times.

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Number of Comparisons for x

Lemma: For every array element x, with high probability, as a
non-pivot, x is compared to a pivot at most O (log n) times.

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Number of Comparisons

UNI
f

FREIBURG

Theorem: With high probability, the total number of

comparisons is at most O(nlogn).

Proof:

Algorithm Theory, WS 2017/18

Fabian Kuhn

27

UNI

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:

* always a correct solution

* running time is a random variable

 Example: randomized quicksort, contention resolution
Monte Carlo Algorithm:

e probabilistic correctness guarantee (mostly correct)

* fixed (deterministic) running time

 Example: primality test

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

