
Chapter 7

Randomization

Algorithm Theory
WS 2017/18

Fabian Kuhn

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Randomized Quicksort

Quicksort:

function Quick (𝑆: sequence): sequence;

{returns the sorted sequence 𝑆}

begin

if #𝑆 ≤ 1 then return 𝑆

else { choose pivot element 𝑣 in 𝑆;

partition 𝑆 into 𝑆ℓ with elements < 𝑣,

and 𝑆𝑟 with elements > 𝑣

return

end;

𝑆

𝑆ℓ < 𝑣 𝑣 𝑆𝑟 > 𝑣

𝑣

Quick(𝑆ℓ) 𝑣 Quick(𝑆𝑟)

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting 𝑛 elements:

• Let’s just count the number of comparisons

• In the partitioning step, all 𝑛 − 1 non-pivot elements have to be
compared to the pivot

• Number of comparisons:

𝒏 − 𝟏 + #𝐜𝐨𝐦𝐩𝐚𝐫𝐢𝐬𝐨𝐧𝐬 𝐢𝐧 𝐫𝐞𝐜𝐮𝐫𝐬𝐢𝐯𝐞 𝐜𝐚𝐥𝐥𝐬

• If rank of pivot is 𝒓:
recursive calls with 𝒓 − 𝟏 and 𝒏 − 𝒓 elements

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Law of Total Expectation

• Given a random variable 𝑋 and

• a set of events 𝐴1, … , 𝐴𝑘 that partition Ω
– E.g., for a second random variable 𝑌, we could have

𝐴𝑖 ≔ 𝜔 ∈ Ω ∶ 𝑌 𝜔 = 𝑖

Law of Total Expectation

𝔼 𝑋 =

𝑖=1

𝑘

ℙ 𝐴𝑖 ⋅ 𝔼 𝑋 𝐴𝑖] =

𝑦

ℙ 𝑌 = 𝑦 ⋅ 𝔼 𝑋 𝑌 = 𝑦]

Example:

• 𝑋: outcome of rolling a die

• 𝐴0 = 𝑋 is even , 𝐴1 = 𝑋 is odd

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Randomized Quicksort Analysis

Random variables:

• 𝐶: total number of comparisons (for a given array of length 𝑛)

• 𝑅: rank of first pivot

• 𝐶ℓ, 𝐶𝑟: number of comparisons for the 2 recursive calls

𝔼 𝐶 = 𝑛 − 1 + 𝔼 𝐶ℓ + 𝔼[𝐶𝑟]

Law of Total Expectation:

𝔼 𝐶 =

𝑟=1

𝑛

ℙ 𝑅 = 𝑟 ⋅ 𝔼[𝐶|𝑅 = 𝑟]

=

𝑟=1

𝑛

ℙ 𝑅 = 𝑟 ⋅ 𝑛 − 1 + 𝔼 𝐶ℓ 𝑅 = 𝑟 + 𝔼[𝐶𝑟|𝑅 = 𝑟]

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Randomized Quicksort Analysis

We have seen that:

𝔼 𝐶 =

𝑟=1

𝑛

ℙ 𝑅 = 𝑟 ⋅ 𝑛 − 1 + 𝔼 𝐶ℓ 𝑅 = 𝑟 + 𝔼[𝐶𝑟|𝑅 = 𝑟]

Define:

• 𝑻(𝒏): expected number of comparisons when sorting 𝑛 elements

𝔼 𝐶 = 𝑇 𝑛
𝔼 𝐶ℓ 𝑅 = 𝑟 = 𝑇 𝑟 − 1
𝔼 𝐶𝑟 𝑅 = 𝑟 = 𝑇(𝑛 − 𝑟)

Recursion:

𝑻 𝒏 =

𝒓=𝟏

𝒏
𝟏

𝒏
⋅ 𝒏 − 𝟏 + 𝑻 𝒓 − 𝟏 + 𝑻 𝒏 − 𝒓

𝑻 𝟎 = 𝑻 𝟏 = 𝟎

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛
elements using randomized quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.

Proof:

𝑇 𝑛 =

𝑟=1

𝑛
1

𝑛
⋅ 𝑛 − 1 + 𝑇 𝑟 − 1 + 𝑇 𝑛 − 𝑟 , 𝑇 0 = 0

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛
elements using randomized quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.

Proof:

𝑇 𝑛 ≤ 𝑛 − 1 +
4

𝑛
⋅ න

1

𝑛

𝑥 ln 𝑥 𝑑𝑥

න𝑥 ln 𝑥 𝑑𝑥 =
𝑥2 ln 𝑥

2
−
𝑥2

4

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Alternative Analysis

Array to sort: [7 , 3 , 1 , 10 , 14 , 8 , 12 , 9 , 4 , 6 , 5 , 15 , 2 , 13 , 11]

Viewing quicksort run as a tree:

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Comparisons

• Comparisons are only between pivot and non-pivot elements

• Every element can only be the pivot once:
 every 2 elements can only be compared once!

• W.l.o.g., assume that the elements to sort are 1,2,… , 𝑛

• Elements 𝑖 and 𝑗 are compared if and only if either 𝑖 or 𝑗 is a
pivot before any element ℎ: 𝑖 < ℎ < 𝑗 is chosen as pivot
– i.e., iff 𝑖 is an ancestor of 𝑗 or 𝑗 is an ancestor of 𝑖

ℙ comparison betw. 𝑖 and 𝑗 =
2

𝑗 − 𝑖 + 1

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Counting Comparisons

Random variable for every pair of elements (𝑖, 𝑗):

𝑿𝒊𝒋 = ቊ
1, if there is a comparison between 𝑖 and 𝑗
0, otherwise

Number of comparisons: 𝑿

𝑋 =

𝑖<𝑗

𝑋𝑖𝑗

• What is 𝔼 𝑋 ?

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛
elements using randomized quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.

Proof:

• Linearity of expectation:
For all random variables 𝑋1, … , 𝑋𝑛 and all 𝑎1, … , 𝑎𝑛 ∈ ℝ,

𝔼

𝑖

𝑛

𝑎𝑖𝑋𝑖 =

𝑖

𝑛

𝑎𝑖𝔼 𝑋𝑖 .

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛
elements using randomized quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.

Proof:

𝔼 𝑋 = 2

𝑖=1

𝑛−1

𝑗=𝑖+1

𝑛
1

𝑗 − 𝑖 + 1
= 2

𝑖=1

𝑛−1

𝑘=2

𝑛−𝑖+1
1

𝑘

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Quicksort: High Probability Bound

• We have seen that the number of comparisons of randomized
quicksort is 𝑂(𝑛 log 𝑛) in expectation.

• Can we also show that the number of comparisons is
𝑂(𝑛 log 𝑛) with high probability?

• Recall:

On each recursion level, each pivot is compared once with
each other element that is still in the same “part”

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Counting Number of Comparisons

• We looked at 2 ways to count the number of comparisons
– recursive characterization of the expected number

– number of different pairs of values that are compared

Let’s consider yet another way:

• Each comparison is between a pivot and a non-pivot

• How many times is a specific array element 𝑥 compared as a
non-pivot?

Value 𝑥 is compared as a non-pivot to a pivot once in every
recursion level until one of the following two conditions apply:

1. 𝑥 is chosen as a pivot

2. 𝑥 is alone

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

Successful Recursion Level

• Consider a specific recursion level ℓ

• Assume that at the beginning of recursion level ℓ, element 𝑥 is
in a sub-array of length 𝐾ℓ that still needs to be sorted.

• If 𝑥 has been chosen as a pivot before level ℓ, we set 𝐾ℓ ≔ 1

Definition: We say that recursion level ℓ is successful for element
𝑥 iff the following is true:

𝐾ℓ+1 = 1 or 𝐾ℓ+1 ≤
2

3
⋅ 𝐾ℓ

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Successful Recursion Level

Lemma: For every recursion level ℓ and every array element 𝑥, it
holds that level ℓ is successful for 𝑥 with probability at least Τ1 3,
independently of what happens in other recursion levels.

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Number of Successful Recursion Levels

Lemma: If among the first ℓ recursion levels, at least log Τ3 2
(𝑛)

are successful for element 𝑥, we have 𝐾ℓ = 1.

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Chernoff Bounds

• Let 𝑋1, … , 𝑋𝑛 be independent 0-1 random variables and define
𝑝𝑖 ≔ ℙ(𝑋𝑖 = 1).

• Consider the random variable 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

• We have 𝜇 ≔ 𝔼 𝑋 = σ𝑖=1
𝑛 𝔼 𝑋𝑖 = σ𝑖=1

𝑛 𝑝𝑖

Chernoff Bound (Lower Tail):

∀𝜹 > 𝟎: ℙ 𝑿 < 𝟏 − 𝜹 𝝁 < 𝒆− Τ𝜹𝟐𝝁 𝟐

Chernoff Bound (Upper Tail):

∀𝜹 > 𝟎: ℙ 𝑿 > 𝟏 + 𝜹 𝝁 <
𝒆𝜹

𝟏 + 𝜹 𝟏+𝜹

𝝁

< 𝒆− Τ𝜹𝟐𝝁 𝟑

holds for 𝜹 ≤ 𝟏

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Chernoff Bounds, Example

Assume that a fair coin is flipped 𝑛 times. What is the probability
to have

1. less than 𝑛/3 heads?

2. more than 0.51𝑛 tails?

3. less than Τ𝑛 2− 𝑐 ⋅ 𝑛 ln 𝑛 tails?

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Proof of Chernoff Bound

• Independent Bernoulli random variables 𝑋1, X2, … , X𝑛
• ℙ 𝑿𝒊 = 𝟏 ≥ 𝒑𝒊, 𝑿 ≔ σ𝒊=𝟏

𝒏 𝑿𝒊, 𝝁 ≔ σ𝒊=𝟏
𝒏 𝒑𝒊 ≥ 𝔼[𝑿]

Chernoff Lower Tail: ℙ 𝑿 < 𝟏 − 𝜹 𝝁 < 𝒆−𝜹
𝟐𝝁/𝟐

Recall

• Markov Inequality: Given non-negative rand. var. 𝑍 ≥ 0

∀𝑡 > 0: ℙ 𝑍 > 𝑡 <
𝔼[𝑍]

𝑡

• Independent random variables 𝑌, 𝑍:
𝔼 𝑌 ⋅ 𝑍 = 𝔼 𝑌 ⋅ 𝔼[𝑍]

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Proof of Chernoff Bound

• ℙ 𝑋𝑖 = 1 ≥ 𝑝𝑖, 𝑋 ≔ σ𝑖=1
𝑛 𝑋𝑖, 𝜇 ≔ σ𝑖=1

𝑛 𝑝𝑖 ≥ 𝔼[𝑋]

Chernoff Lower Tail: ℙ 𝑿 < 𝟏 − 𝜹 𝝁 < 𝒆−𝜹
𝟐𝝁/𝟐

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Proof of Chernoff Bound

• ℙ 𝑋𝑖 = 1 ≥ 𝑝𝑖, 𝑋 ≔ σ𝑖=1
𝑛 𝑋𝑖, 𝜇 ≔ σ𝑖=1

𝑛 𝑝𝑖 ≥ 𝔼[𝑋]

Chernoff Lower Tail: ℙ 𝑿 < 𝟏 − 𝜹 𝝁 < 𝒆−𝜹
𝟐𝝁/𝟐

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Proof of Chernoff Bound

• ℙ 𝑋𝑖 = 1 ≥ 𝑝𝑖, 𝑋 ≔ σ𝑖=1
𝑛 𝑋𝑖, 𝜇 ≔ σ𝑖=1

𝑛 𝑝𝑖 ≥ 𝔼[𝑋]

Chernoff Lower Tail: ℙ 𝑿 < 𝟏 − 𝜹 𝝁 < 𝒆−𝜹
𝟐𝝁/𝟐

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Number of Comparisons for 𝑥

Lemma: For every array element 𝑥, with high probability, as a
non-pivot, 𝑥 is compared to a pivot at most 𝑂 log 𝑛 times.

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

Number of Comparisons for 𝑥

Lemma: For every array element 𝑥, with high probability, as a
non-pivot, 𝑥 is compared to a pivot at most 𝑂 log 𝑛 times.

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Number of Comparisons

Theorem: With high probability, the total number of
comparisons is at most 𝑶 𝒏 𝐥𝐨𝐠𝒏 .

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Types of Randomized Algorithms

Las Vegas Algorithm:

• always a correct solution

• running time is a random variable

• Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

• probabilistic correctness guarantee (mostly correct)

• fixed (deterministic) running time

• Example: primality test

