

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2017/18

Fabian Kuhn

Approximation Algorithms

- Optimization appears everywhere in computer science
- We have seen many examples, e.g.:
 - scheduling jobs
 - traveling salesperson
 - maximum flow, maximum matching
 - minimum spanning tree
 - minimum vertex cover
 - **–** ...
- Many discrete optimization problems are NP-hard
- They are however still important and we need to solve them
- As algorithm designers, we prefer algorithms that produce solutions which are provably good, even if we can't compute an optimal solution.

Approximation Algorithms: Examples

We have already seen two approximation algorithms

- Metric TSP: If distances are positive and satisfy the triangle inequality, the greedy tour is only by a log-factor longer than an optimal tour
- Maximum Matching and Vertex Cover: A maximal matching gives solutions that are within a factor of 2 for both problems.

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio α :

Minimization: $\alpha := \max_{\substack{\text{input instances}}} \frac{ALG}{OPT}$ Maximization: $\alpha := \min_{\substack{\text{input instances}}} \frac{ALG}{OPT}$

Example: Load Balancing

We are given:

- m machines $M_1, ..., M_m$
- n jobs, processing time of job i is t_i

Goal:

Assign each job to a machine such that the <u>makespan</u> is minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore want to get a good approximation for the problem.

Greedy Algorithm

There is a simple greedy algorithm:

- Go through the jobs in an arbitrary order
- When considering job i, assign the job to the machine that currently has the smallest load.

Example: 3 machines, 12 jobs

Greedy Assignment:

Optimal Assignment:

$$M_1: \begin{bmatrix} 3 & 4 & 2 & 3 & 1 \end{bmatrix}$$

$$M_2$$
: 6 4 3

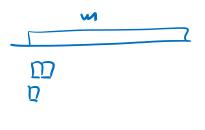
$$M_3$$
: 4 2 1 5

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$T^* \ge \frac{1}{m} \cdot \sum_{i=1}^{n} t_i$$

- Lower bound can be far from T*:
 - -m machines, m jobs of size 1, 1 job of size m

$$T^* = m, \qquad \frac{1}{m} \cdot \sum_{i=1}^n t_i = 2$$



- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$T^* \ge \frac{1}{m} \cdot \sum_{i=1}^{n} t_i$$

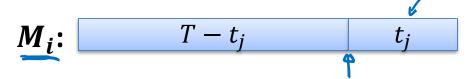
Second lower bound on optimal makespan T*:

$$T^* \ge \max_{1 \le i \le n} t_i$$

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$.

Proof:

- For machine \underline{k} , let $\underline{T_k}$ be the time used by machine k
- Consider some machine M_i for which $T_i = T$
- Assume that job j is the last one schedule on M_i :



• When job j is scheduled, M_i has the minimum load

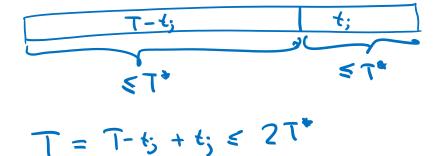
Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$.

Proof:

For all machines M_k : load $T_k \ge T - t_i$ $\ge t_i \ge m (T - t_i)$

$$\leq t_i \geq m(T-t_j)$$

Lo
$$T^* \ge \frac{1}{m} \le t_i \ge T - t_i$$



Can We Do Better?

$$\frac{2m-1}{m} = 2 - \frac{1}{w}$$

The analysis of the greedy algorithm is almost tight:

- Example with n = m(m-1) + 1 jobs
- Jobs $1, \dots, n-1=m(m-1)$ have $t_i=1$, job n has $t_n=m$

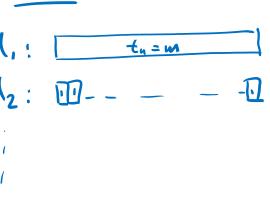
Greedy Schedule:

$$M_1: 1 1 1 1 \cdots 1 t_n = m$$

$$M_2: 1111 \dots 1$$
 makespan = $2m-1$

$$M_3$$
: 1111 ··· 1

$$M_m: 1111 \cdots 1$$



Improving Greedy

Bad case for the greedy algorithm:

One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

- 1. Sort jobs by decreasing length s.t. $t_1 \ge t_2 \ge \cdots \ge t_n$
- 2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If n > m: $T^* \ge t_m + t_{m+1} \ge 2t_{m+1}$

Proof:

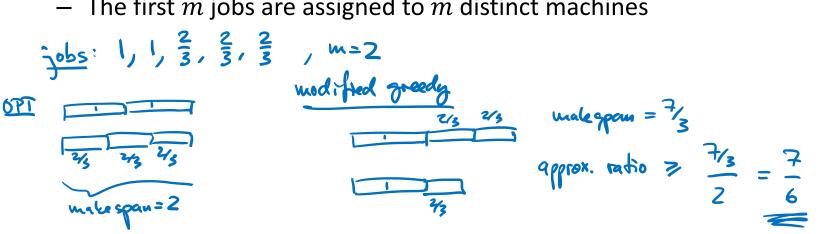
- Two of the first m+1 jobs need to be scheduled on the same machine
- Jobs m and m+1 are the shortest of these jobs

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio $\leq \frac{3}{2}$.

Proof:

- We show that $T \leq 3/2 \cdot T^*$
- As before, we consider the machine M_i with $T_i = T$
- Job j (of length t_i) is the last one scheduled on machine M_i
- If j is the only job on M_i , we have $T = T^*$
- Otherwise, we have $j \ge m+1$
 - The first m jobs are assigned to m distinct machines



Metric TSP

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., d(u, v) is dist from u to v
- Distances define a metric on V:

$$d(u,v) = d(v,u) \ge 0, \qquad d(u,v) = 0 \Leftrightarrow u = v$$

 $\forall u,v,w \in V: d(u,v) \le d(u,w) + d(w,v) \longleftarrow \Delta$ -inequality

Solution:

- Ordering/permutation $v_1, v_2, ..., v_n$ of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_1, v_n) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

Metric TSP

- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$ -approximation
- Can we get a constant approximation ratio?
- We will see that we can...

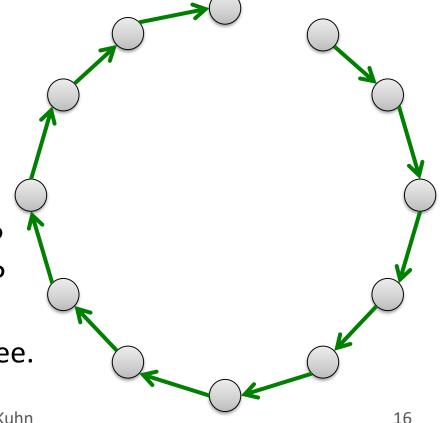
TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the weight of a minimum spanning tree

Proof:

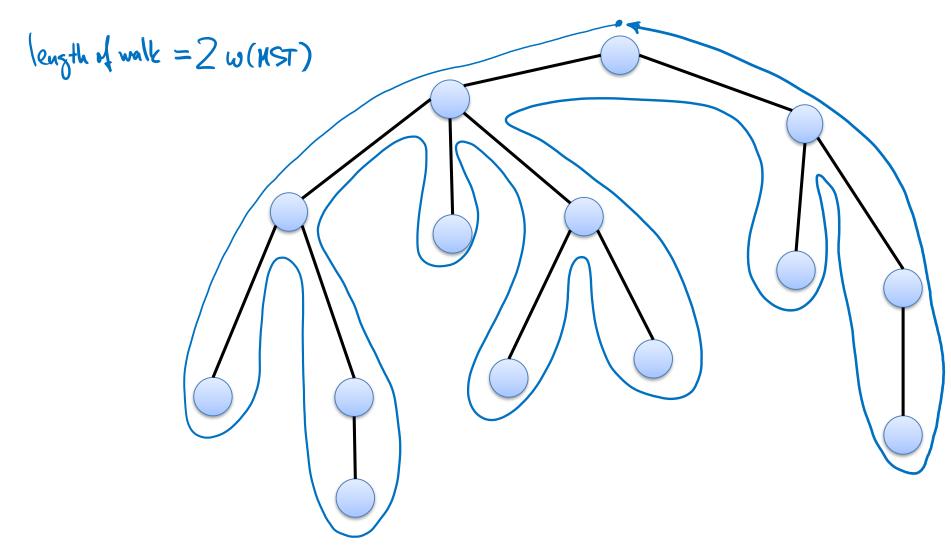
A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.



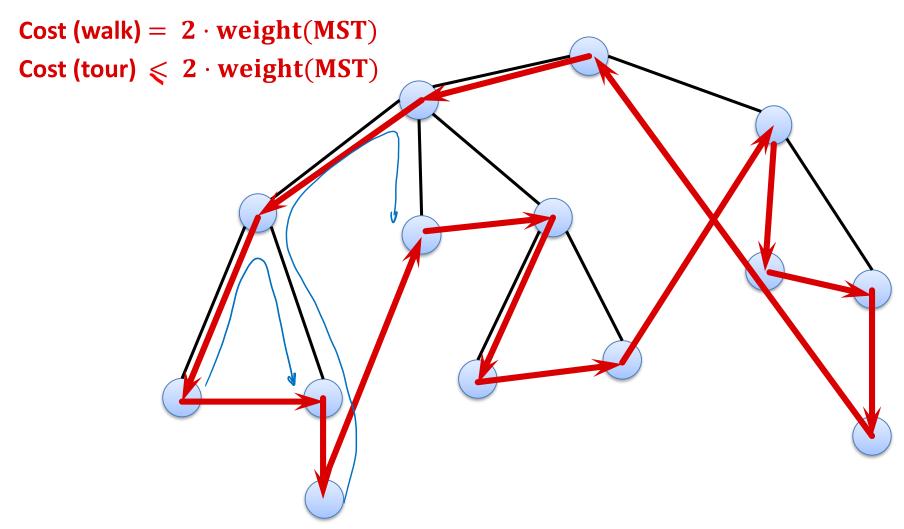
The MST Tour

Walk around the MST...



The MST Tour

Walk around the MST...



Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

Proof:

- Triangle inequality \rightarrow length of tour is at most 2 · weight(MST)
- We have seen that weight(MST) < opt. tour length

Can we do even better?

Metric TSP Subproblems

Claim: Given a metric (V, d) and (V', d) for $V' \subseteq V$, the optimal TSP path/tour of (V', d) is at most as large as the optimal TSP

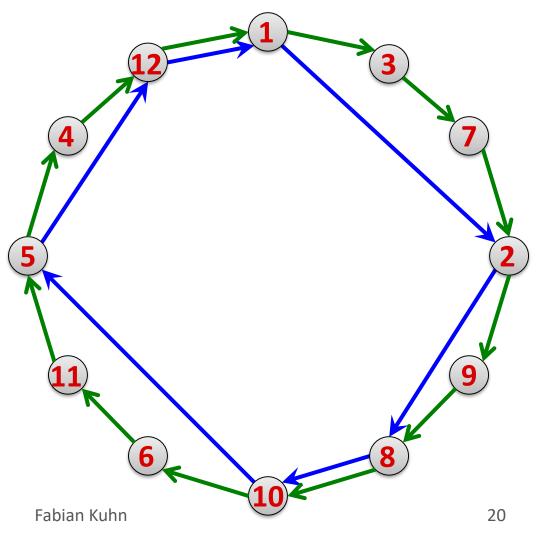
path/tour of (V, \overline{d}) .

Optimal TSP tour of nodes 1, 2, ..., 12

Induced TSP tour for nodes 1, 2, 5, 8, 10, 12

blue tour ≤ green tour

triangle ineq.



TSP and Matching

- Consider a metric TSP instance (V, d) with an even number of nodes |V|
- Recall that a perfect matching is a matching $M \subseteq V \times V$ such that every node of V is incident to an edge of M.
- Because |V| is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of V into |V|/2 pairs is a perfect matching.
- The weight of a matching *M* is the sum of the distances represented by all edges in *M*:

$$w(M) = \sum_{\{u,v\} \in M} d(u,v)$$

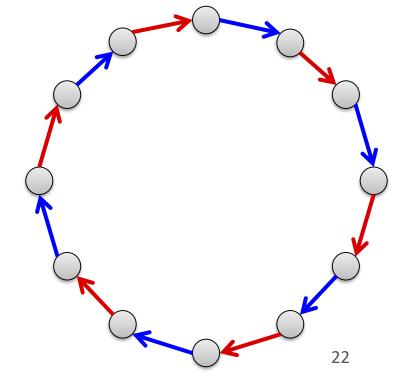
TSP and Matching

Lemma: Assume we are given a TSP instance (V, d) with an even number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of (V, d).

Proof:

The edges of a TSP tour can be partitioned into 2 perfect

matchings



Minimum Weight Perfect Matching

Claim: If |V| is even, a minimum weight perfect matching of (V, d) can be computed in polynomial time

Proof Sketch:

- We have seen that a minimum weight perfect matching in a complete bipartite graph can be computed in polynomial time
- With a more complicated algorithm, also a minimum weight perfect matching in complete (non-bipartite) graphs can be computed in polynomial time
- The algorithm uses similar ideas as the bipartite weighted matching algorithm and it uses the Blossom algorithm as a subroutine

Algorithm Outline

Problem of MST algorithm:

Every edge has to be visited twice

Goal:

 Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour)

Euler Tours:

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

Euler Tour

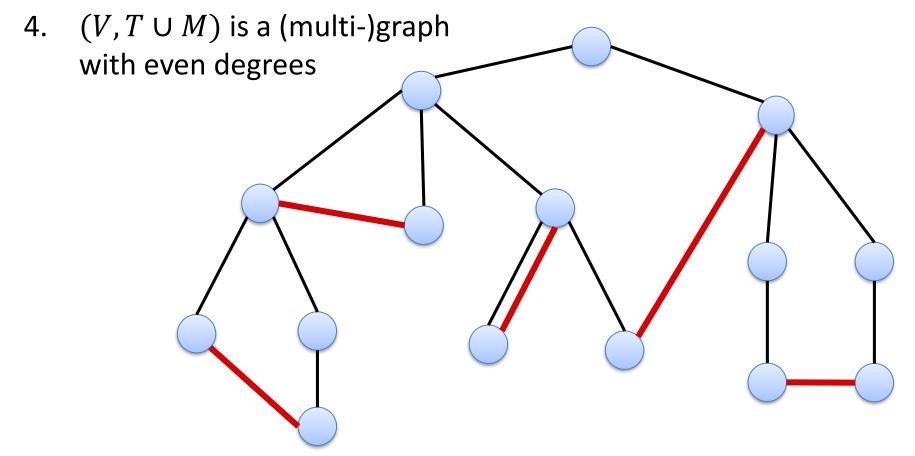
Theorem: A connected (multi-)graph G has an Euler tour if and only if every node of G has even degree.

Proof:

- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:
- 1. Start at some node
- 2. As long as possible, follow an unvisited edge
 - Gives a partial tour, the remaining graph still has even degree
- 3. Solve problem on remaining components recursively
- 4. Merge the obtained tours into one tour that visits all edges

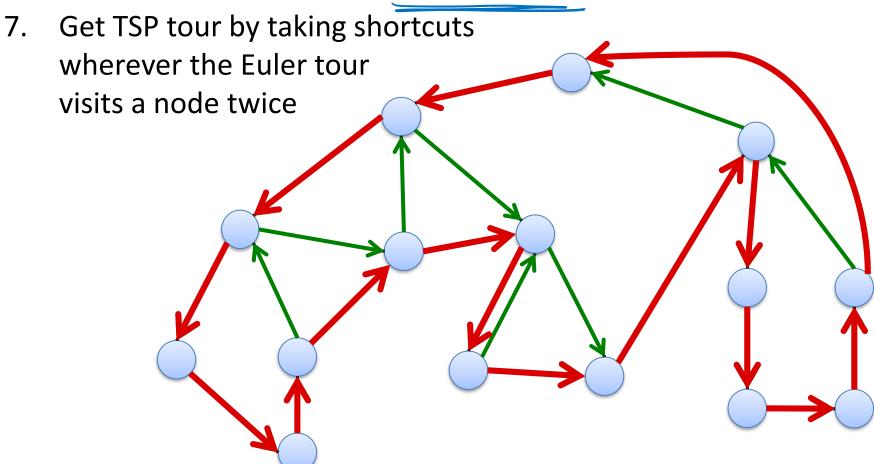
TSP Algorithm

- 1. Compute MST T
- 2. V_{odd} : nodes that have an odd degree in T ($|V_{\text{odd}}|$ is even)
- 3. Compute min weight perfect matching M of (V_{odd}, d)



TSP Algorithm

- 5. Compute Euler tour on $(V, T \cup M)$
- 6. Total length of Euler tour $\leq \frac{3}{2} \cdot TSP_{OPT}$



TSP Algorithm

The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation ratio of at most $\frac{3}{2}$.

Proof:

- The length of the Euler tour is $\leq \frac{3}{2} \cdot \text{TSP}_{\text{OPT}}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

Set Cover

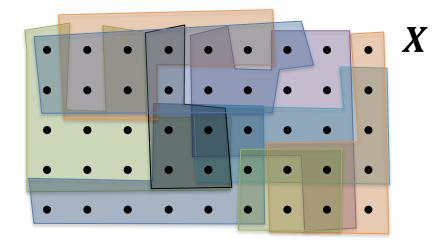
Input:

• A set of elements X and a collection S of subsets X, i.e., $S \subseteq 2^X$ – such that $\bigcup_{S \in S} S = X$

Set Cover:

• A set cover \mathcal{C} of (X, \mathcal{S}) is a subset of the sets \mathcal{S} which covers X:

$$\bigcup_{S \in \mathcal{C}} S = X$$



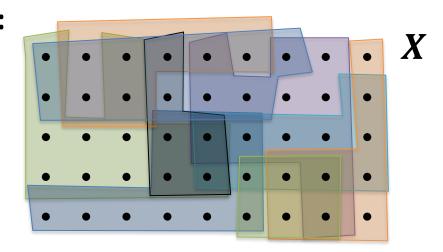
Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover $\mathcal C$ of smallest possible size
 - i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

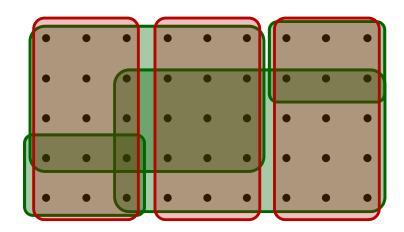
- Each set $S \in S$ has a weight $w_S > 0$
- Goal: Find a set cover C of minimum weight



Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $\mathcal{C} = \emptyset$
- In each step, add set $S \in S \setminus C$ to C s.t. S covers as many uncovered elements as possible



Greedy Weighted Set Cover Algorithm:

- Start with $\mathcal{C} = \emptyset$
- In each step, add set $S \in S \setminus C$ with the best weight per newly covered element ratio (set with best efficiency):

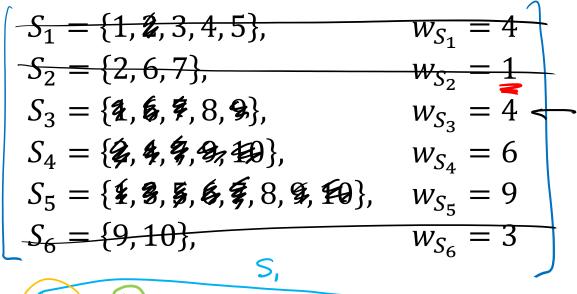
$$S = \arg\min_{S \in \mathcal{S} \setminus \mathcal{C}} \frac{w_S}{|S \setminus \bigcup_{T \in \mathcal{C}} T|}$$

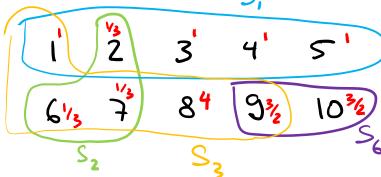
Analysis of Greedy Algorithm:

- Assign a price p(x) to each element $x \in X$: The efficiency of the set when covering the element
- If covering \underline{x} with set S, if partial cover is \underline{C} before adding S:

$$p(e) = \frac{w_S}{|S \setminus \bigcup_{T \in \mathcal{C}} T|}$$

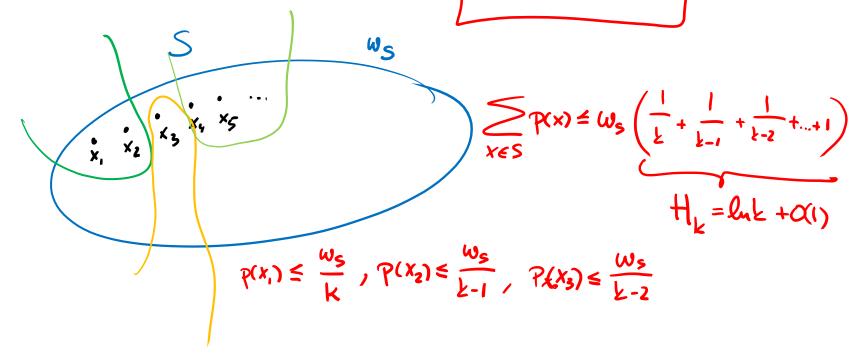
- Universe $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- Sets $S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$





Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$



Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

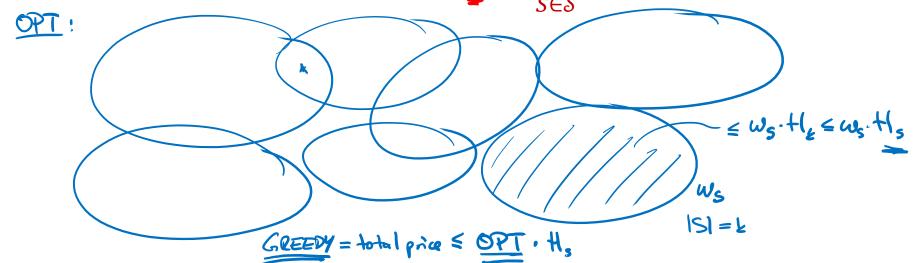
Corollary: The total price of a set $S \in \mathcal{S}$ of size |S| = k is

$$\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le \underline{1 + \ln k}$$

Corollary: The total price of a set $S \in S$ of size |S| = k is

$$\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_s \leq 1 + \ln s$, where s is the cardinality of the largest set ($s = \max_{S \in S} |S|$).



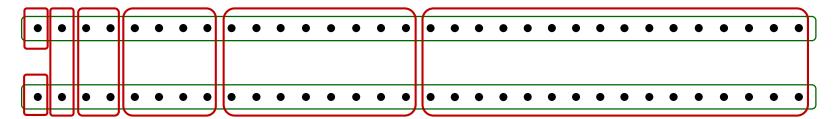
Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq (1 - o(1)) \cdot \ln s$.

• if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n)$...



$$\begin{array}{c}
\mathsf{OPT} = 2 \\
\mathsf{GREEDY} \geq \log_2 n
\end{array}$$

Set Cover: Better Algorithm? (1 - fm) · lim fm = 0

An approximation ratio of $\ln n$ seems not spectacular...

Can we improve the approximation ratio?

$$2^{O(n)} = N^{O(\frac{N}{\log n})}$$

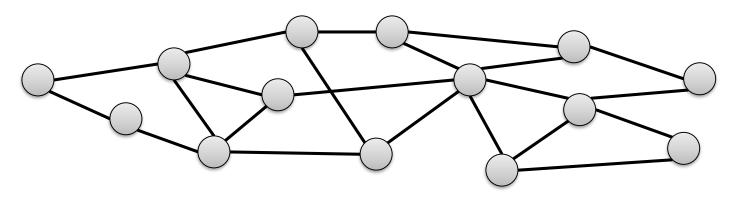
No, unfortunately not, unless $P \approx NP$

Feige showed that unless NP has deterministic $n^{O(\log \log n)}$ -time algorithms, minimum set cover cannot be approximated better than by a factor $(1 - o(1)) \cdot \ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
 - PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
 - Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph G = (V, E) such that $\forall \{u, v\} \in E$, $\{u, v\} \cap S \neq \emptyset$.



Minimum Vertex Cover:

Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

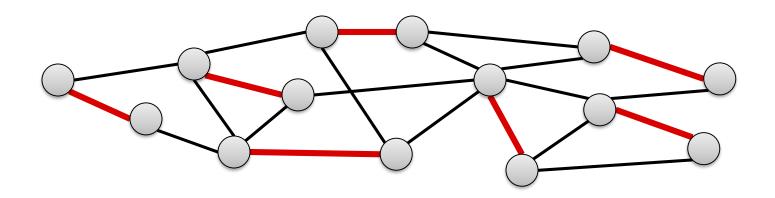
Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M



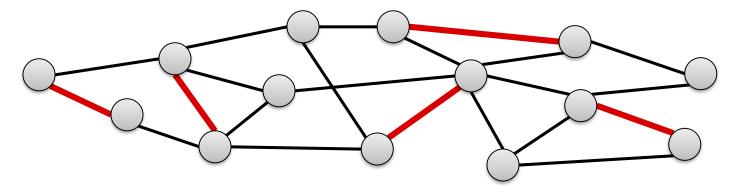
Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, $|S| \le 2|M|$

Proof:

• M is maximal: for every edge $\{u,v\} \in E$, either u or v (or both) are matched



- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Maximal Matching Approximation

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$|M| \ge \frac{|M^*|}{2}.$$

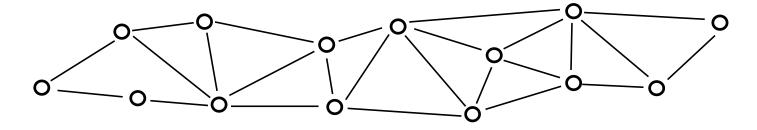
Proof:

Theorem: The set of all matched nodes of a maximal matching M is a vertex cover of size at most twice the size of a min. vertex cover.

Set Cover: Special Cases

Dominating Set:

Given a graph G = (V, E), a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in V \setminus S$, there is a neighbor $v \in S$.



Minimum Hitting Set

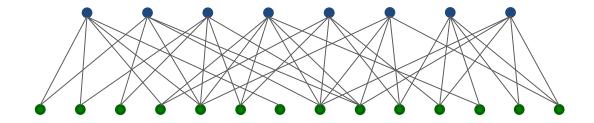
Given: Set of elements X and collection of subsets $S \subseteq 2^X$

− Sets cover $X: \bigcup_{S \in S} S = X$

Goal: Find a min. cardinality subset $H \subseteq X$ of elements such that $\forall S \in S : S \cap H \neq \emptyset$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

Sets



Knapsack

- n items 1, ..., n, each item has weight $w_i > 0$ and value $v_i > 0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most
 W and total value is maximized:

$$\max \sum_{i \in S} v_i$$
 s.t. $S \subseteq \{1, ..., n\}$ and $\sum_{i \in S} w_i \le W$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

Knapsack: Dynamic Programming Alg.

We have shown:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.

Knapsack: Dynamic Programming Alg.

We have shown:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.

Problems:

- If W and V are large, the algorithms are not polynomial in n
- If the values or weights are not integers, things are even worse (and in general, the algorithms cannot even be applied at all)

Idea:

Can we adapt one of the algorithms to at least compute an approximate solution?

- The algorithm has a parameter $\varepsilon > 0$
- We assume that each item alone fits into the knapsack
- We define:

$$V \coloneqq \max_{1 \le i \le n} v_i, \qquad \forall i : \widehat{v}_i \coloneqq \left[\frac{v_i n}{\varepsilon V}\right], \qquad \widehat{V} \coloneqq \max_{1 \le i \le n} \widehat{v}_i$$

- We solve the problem with integer values \hat{v}_i and weights w_i using dynamic programming in time $O(n^2 \cdot \hat{V})$
- If solution value < V, we take item with value V instead

Theorem: The described algorithm runs in time $O(n^3/\varepsilon)$.

Proof:

$$\widehat{V} = \max_{1 \le i \le n} \widehat{v_i} = \max_{1 \le i \le n} \left\lceil \frac{v_i n}{\varepsilon V} \right\rceil = \left\lceil \frac{V n}{\varepsilon V} \right\rceil = \left\lceil \frac{n}{\varepsilon} \right\rceil$$

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$.

Proof:

• Define the set of all feasible solutions (subsets of [n])

$$S \coloneqq \left\{ S \subseteq \{1, \dots, n\} : \sum_{i \in S} w_i \le W \right\}$$

- v(S): value of solution S w.r.t. values $v_1, v_2, ...$ $\hat{v}(S)$: value of solution S w.r.t. values $\hat{v}_1, \hat{v}_2, ...$
- S^* : an optimal solution w.r.t. values $v_1, v_2, ...$ \hat{S} : an optimal solution w.r.t. values $\hat{v}_1, \hat{v}_2, ...$
- Weights are not changed at all, hence, \hat{S} is a feasible solution

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$.

Proof:

We have

$$v(S^*) = \sum_{i \in S^*} v_i = \max_{S \in \mathcal{S}} \sum_{i \in S} v_i,$$

$$\hat{v}(\hat{S}) = \sum_{i \in \hat{S}} \hat{v}_i = \max_{S \in \mathcal{S}} \sum_{S \in \mathcal{S}} \hat{v}_i$$

Because every item fits into the knapsack, we have

$$\forall i \in \{1, \dots, n\}: \ v_i \leq V \leq \sum_{j \in S^*} v_j$$

• Also:
$$\widehat{v_i} = \left\lceil \frac{v_i n}{\varepsilon V} \right\rceil \implies v_i \leq \frac{\varepsilon V}{n} \cdot \widehat{v_i}$$
, and $\widehat{v_i} \leq \frac{v_i n}{\varepsilon V} + 1$

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$.

Proof:

We have

$$v(S^*) = \sum_{i \in S^*} v_i \le \frac{\varepsilon V}{n} \cdot \sum_{i \in S^*} \widehat{v_i} \le \frac{\varepsilon V}{n} \cdot \sum_{i \in \hat{S}} \widehat{v_i} \le \frac{\varepsilon V}{n} \cdot \sum_{i \in \hat{S}} \left(1 + \frac{v_i n}{\varepsilon V}\right)$$

Therefore

$$v(S^*) = \sum_{i \in S^*} v_i \le \frac{\varepsilon V}{n} \cdot |\hat{S}| + \sum_{i \in \hat{S}} v_i \le \varepsilon V + v(\hat{S})$$

• We have $v(S^*) \ge V$ and therefore

$$(1-\varepsilon)\cdot v(S^*) \leq v(\widehat{S})$$

Approximation Schemes

- For every parameter $\varepsilon > 0$, the knapsack algorithm computes a $(1 + \varepsilon)$ -approximation in time $O(n^3/\varepsilon)$.
- For every fixed ε , we therefore get a polynomial time approximation algorithm
- An algorithm that computes an $(1 + \varepsilon)$ -approximation for every $\varepsilon > 0$ is called an approximation scheme.
- If the running time is polynomial for every fixed ε , we say that the algorithm is a polynomial time approximation scheme (PTAS)
- If the running time is also polynomial in $1/\varepsilon$, the algorithm is a fully polynomial time approximation scheme (FPTAS)
- Thus, the described alg. is an FPTAS for the knapsack problem