UNI

"
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

FREIBURG

UNI

Approximation Ratio

FREIBURG

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

* OPT = 0 : optimal objective value
ALG = 0 : objective value achieved by the algorithm

* Approximation Ratio a:

.. ALG
Minimization: a = max -
input instances OPT

o _ _ ALG
Maximization: a := min —

input instances QP T

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Knapsack

UNI
FREIBURG

* nitems1,...,n, eachitem has weight w; > 0 and value v; > 0
* Knapsack (bag) of capacity W

* Goal: pack items into knapsack such that total weight is at most
W and total value is maximized:

maxz v;
i€ES
s.t. S€{1,...,n}and Zwi <Ww
iES

* E.g.:jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Knapsack: Dynamic Programming Alg.

UNI
f

FREIBURG

We have seen:

* If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nW)

* |If all values v; are integers, there is another dynamic progr.
algorithm that runs in time 0(n?V), where V is the max. value.

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

UNI

Knapsack: Dynamic Programming Alg.

FREIBURG

We have seen:

* If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nW)

* |If all values v; are integers, there is another dynamic progr.
algorithm that runs in time O (n?V), where V is the max. value.

Problems:
 If W and V are large, the algorithms are not polynomial inn

* If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

 Can we adapt one of the algorithms to at least compute an
approximate solution?

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Approximation Algorithm

UNI
f

FREIBURG

* The algorithm has a parameter e > 0
 We assume that each item alone fits into the knapsack
 We define:

.~ Vi 5
V = maxv;, Vi:v; = [— , V := max 7;
1<isn eV 1<i<n

* We solve the problem with integer values ¥; and weights w;
using dynamic programming in time O (n? - 17)
* |f solution value < V, we take item with value V instead

Theorem: The described algorithm runs in time 0(n3/¢).

Proof:

V=maxvi=max [} H

1<i<n 1sisn

Algorithm Theory, WS 2017/18 Fabian Kuhn

Approximation Algorithm

UNI
f

FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof:
* Define the set of all feasible solutions (subsets of [n])

S = {S c{1,..,n}: ZWi < W}

LES

* v(S5): value of solution S w.r.t. values v, v,, ...
D(S5): value of solution S w.r.t. values 74, D, ...

 S":an optimal solution w.r.t. values vy, v,, ...
S :an optimal solution w.r.t. values ¥, U,, ...

* Weights are not changed at all, hence, S is a feasible solution

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Approximation Algorithm

UNI
FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof:
v(s)=) vi=max) v

e We have

i€S* i€S
(S ==:E:i3-==lruu(:E:i?
(5) , ' Ses '
i€S$ SES

* Because every item fits into the knapsack, we have
Vie(l.,nkv SV)y
jES*

~ vin eV o ~ vin
. AIso:vi=L‘—V = v; S — -1, andvisgl—v+1

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Approximation Algorithm

UNI
FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof:
e We have
eV &V 54
v(S*)=Zvi_—-ZUi_— vl_—z 1+—
n n n y
[ES™ IES™ ieS €S

e Therefore
v(S*) = z v, < —
IES* ieS

* We have v(5§*) = V and therefore
(1—¢) - v(s*) <v(S)

v; < eV + v(S’)

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Approximation Schemes

UNI
FREIBURG

For every parameter € > 0, the knapsack algorithm computes a
(1 + &)-approximation in time 0(n>/¢).

For every fixed &, we therefore get a polynomial time
approximation algorithm

An algorithm that computes an (1 + &)-approximation for every
& > 0is called an approximation scheme.

If the running time is polynomial for every fixed &, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

If the running time is also polynomial in 1/¢, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

Thus, the described alg. is an FPTAS for the knapsack problem

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

