

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2017/18

Fabian Kuhn

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

- OPT ≥ 0 : optimal objective value
 ALG ≥ 0 : objective value achieved by the algorithm
- Approximation Ratio α :

Minimization: $\alpha \coloneqq \max_{\text{input instances}} \frac{\text{ALG}}{\text{OPT}} \ge 1$ Maximization: $\alpha \coloneqq \min_{\text{input instances}} \frac{\text{ALG}}{\text{OPT}} \le 1$

Algorithm Theory, WS 2017/18

Knapsack

- <u>*n* items 1, ..., *n*</u>, each item has weight $w_i > 0$ and value $v_i > 0$
- Knapsack (bag) of capacity \underline{W}
- Goal: pack items into knapsack such that total weight is at most
 W and total value is maximized:

$$\max \sum_{i \in S} v_i$$

s.t. $S \subseteq \{1, ..., n\}$ and $\sum_{i \in S} w_i \le W$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

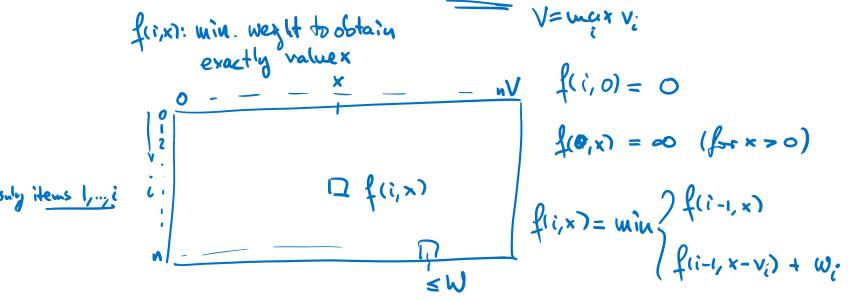
Knapsack: Dynamic Programming Alg.

We have seen:

• If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)

0 (i,×)

• If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.



We have seen:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.

Problems:

- If W and V are large, the algorithms are not polynomial in n
- If the values or weights are not integers, things are even worse (and in general, the algorithms cannot even be applied at all)

Idea:

• Can we adapt one of the algorithms to at least compute an approximate solution?

Algorithm Theory, WS 2017/18

Approximation Algorithm

- The algorithm has a parameter $\underline{\varepsilon} > 0$
- We assume that each item alone fits into the knapsack
- We define:

$$V \coloneqq \max_{1 \le i \le n} v_i, \qquad \forall i : \widehat{v}_i \coloneqq \left[\frac{v_i n}{\varepsilon V}\right], \qquad \widehat{V} \coloneqq \max_{1 \le i \le n} \widehat{v}_i = \left[\frac{v_n}{\varepsilon V}\right]$$

- We solve the problem with integer values \hat{v}_i and weights w_i using dynamic programming in time $O(n^2 \cdot \hat{V})$
- If solution value < V, we take item with value Vanstead

Theorem: The described algorithm runs in time $O(n^3/\varepsilon)$. **Proof:**

$$\widehat{V} = \max_{1 \le i \le n} \widehat{v_i} = \max_{1 \le i \le n} \left[\frac{v_i n}{\varepsilon V} \right] = \left[\frac{V n}{\varepsilon V} \right] = \left[\frac{n}{\varepsilon} \right] \le \left(\frac{1}{3} + 1 \right)$$

Approximation Algorithm ALG >1-2

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$. $v(\hat{S}) \ge (1-\varepsilon) \cdot v(S^{*})$ **Proof:**

Define the set of all feasible solutions (subsets of [n])

$$\mathcal{S} \coloneqq \left\{ S \subseteq \{1, \dots, n\} : \sum_{i \in S} w_i \le W \right\}$$

- $$\begin{split} & \underbrace{S} \coloneqq \{S \subseteq \{1, \dots, n\} : \sum_{i \in S} w_i \leq \mathbb{N} \\ & \bullet \quad v(S): \text{ value of solution } S \text{ w.r.t. values } v_1, v_2, \dots \\ & \hat{v}(S): \text{ value of solution } S \text{ w.r.t. values } \hat{v}_1, \hat{v}_2, \dots \\ & \bullet \quad S^*: \text{ an optimal solution } \mathbf{w} \text{ ret } \mathbf{v} \text{ } \end{split}$$
 - S^* : an optimal solution w.r.t. values $v_1, v_2, ...$ $\neg \hat{S}$: an optimal solution w.r.t. values $\hat{v}_1, \hat{v}_2, ...$
 - Weights are not changed at all, hence, \hat{S} is a feasible solution

Approximation Algorithm $\frac{1}{\sqrt{(s)} \ge (1-s)\sqrt{(s^{*})}}$

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$. **Proof:**

• We have

$$v(S^*) = \sum_{i \in S^*} v_i = \max_{S \in S} \sum_{i \in S} v_i, \quad S^* : \text{opd sol, w.r.t. } v_i$$
$$\hat{v}(\hat{S}) = \sum_{i \in \hat{S}} \hat{v}_i = \max_{S \in S} \sum_{S \in S} \hat{v}_i, \quad \hat{S}: \text{ opd sol, w.r.t. } \hat{v}_i$$

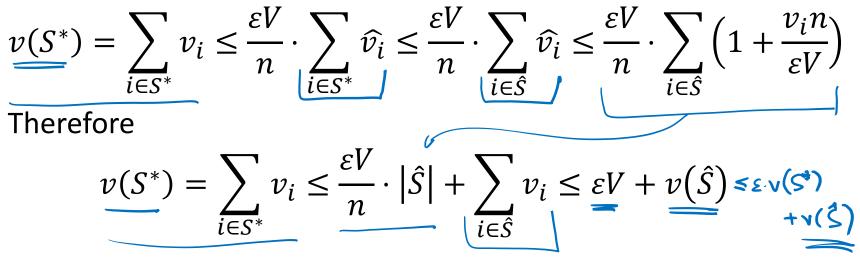
• Because every item fits into the knapsack, we have

$$\begin{split} & \hat{\mathbf{v}}_{i} \neq \frac{\mathbf{v}_{i} \mathbf{v}_{i}}{\varepsilon \mathbf{V}} \rightarrow \frac{\varepsilon \mathbf{V}_{i} \approx \mathbf{v}_{i}}{\varepsilon \mathbf{v}_{i} \neq \mathbf{v}_{i}} \quad \forall i \in \{1, \dots, n\}: \ \underbrace{\mathbf{v}_{i} \leq V}_{i} \leq \underbrace{\mathbf{V} \leq V}_{j \in S^{*}} \\ \bullet \quad \text{Also:} \ \hat{\mathbf{v}}_{i} = \left[\frac{\mathbf{v}_{i} n}{\varepsilon \mathbf{V}}\right] \implies \quad \mathbf{v}_{i} \leq \frac{\varepsilon \mathbf{V}}{n} \cdot \hat{\mathbf{v}}_{i}, \text{ and } \\ \hat{\mathbf{v}}_{i} \leq \frac{\mathbf{v}_{i} n}{\varepsilon \mathbf{V}} + 1 \end{split}$$

Approximation Algorithm $\sqrt{(s)} \neq \cdots \neq \sqrt{(s')}$

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$. **Proof:** $\sqrt{\leq \sqrt{5}}$

• We have



• We have $v(S^*) \ge V$ and therefore

 $(1-\varepsilon)\cdot v(S^*) \leq v(\widehat{S})$

Approximation Schemes

- For every parameter $\varepsilon > 0$, the knapsack algorithm computes a $(1 \not \ast \varepsilon)$ -approximation in time $O(n^3/\varepsilon)$.
- For every fixed ε, we therefore get a polynomial time approximation algorithm

(1-2)

- An algorithm that computes an $(1 + \varepsilon)$ -approximation for every $\varepsilon > 0$ is called an <u>approximation scheme</u>.
- If the running time is polynomial for every fixed ε, we say that the algorithm is a polynomial time approximation scheme (PTAS)
- If the running time is also polynomial in $1/\epsilon$, the algorithm is a fully polynomial time approximation scheme (FPTAS)
- Thus, the described alg. is an FPTAS for the knapsack problem