UNI

"
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

FREIBURG

Approximation Ratio

UNI
f

FREIBURG

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

* OPT = 0 : optimal objective value
ALG = 0O : objective value achieved by the algorithm

* Approximation Ratio a:

Minimizat ALG -
INImization: o ‘= max —
input instances OPT
o _ ALG
Maximization: a := min — <)

input instances QP T

o) - @LAL &

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Knapsack

UNI
FREIBURG

* nitems1,...,n, eachitem has weight w; > 0 and value v; > 0

Knapsack (bag) of capacity W

Goal: pack items into knapsack such that total weight is at most
W and total value is maximized:

max E V;
i€S

s.t. S€{1,...,n}and Zwi <Ww

IES

e

E.g.: jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

UNI

oy - - -

FREIBURG

Knapsack: Dynamic Programmmg Alg.

We have seen: " l J g G0 (

* If all item weights w; are integers, using dynarﬁic programming,
the knapsack problem can be solved in time O (nW)

* |If all values v; are integers, there is another dynamic progr.
algorithm that runs in time 0(n?V), where V is the max. value.

T —
—_—

£(\,x1 WM . wus\{'d'voua?n V;\M{q Ve
o - — —)i S — u\/ —f((/ 0)‘—"
0 !
(v? §@,0 = o (feex=0)
GuJ |~kv-$ "' D %(t,k) .Q((-1, x)
:/ £((,X7 \M\IA
"o — Z\d Z_eu-cxv)-&w

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Knapsack: Dynamic Programming Alg.

|
FRE:BURG

UNI

We have seen:
* If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nW)

) * |If all values v; are integers, there is another dynamic progr.
algorithm that runs in time 0(n?V), where V is the max. value.

Problems:
 If W and V are large, the algorithms are not polynomial inn

* If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

 Can we adapt one of the algorithms to at least compute an
approximate solution?

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Approximation Algorithm

UNI
f

FREIBURG

* The algorithm has a parameter g > 0
 We assume that each item alone fits into the knapsack
v — [vl
‘= maxv;, 1:D; == |—
- 34

e We define: V
W
= 1<i<n 1<isn = £\/’

* We solve the problem with integer values ¥; and weights w;
using dynamic programming in time O (n? V)

o dfsolution/value < V, wetake item withvalue Vinstedd,

S I

Theorem: The described algorithm runs in time 0(n3/¢).

zﬁ
Proof: X V)
7= e = el = 7] = < 20

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Approximation Algorithm 4t ¢

UNI
FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof: v(é) 22— v(S)

* Define the set of all feasible solutions (subsets of [n])

—~—

;S.‘ = {S c{1,..,n}: ZWi < W}

LES

.

Q
W ¢ v(S): value of solution S w.r.t. values vy, v, ...
N U(S): value of solution S w.r.t. values ¥y, U, ...

3\ S":an optimal solution w.r.t. values vy, v,, ...
! —S§ :an optimal solution w.r.t. values ¥4, D,, ...

* Weights are not changed at all, hence, S is a feasible solution

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

- o . V\udhsl“’“’
Approximation Algorithm ey (<)

UNI
FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof:
e We have
U(S*) = Z Vi = maxi Vi, S* :ora g,(w.ed, v
SES
i€eS* i€eS) L
ﬁ(g) =Zﬁi=maxz{]\i Q: orlg,e. Wt W
SES

ieS SES

* Because every item fits into the knapsack, we have
A Vin \a VI, € {1) "';n}: 1il S! S z v]
V.2 =% 2 v, _ L
" eV 1

~ vin eV o ~ vin
. AIso:vi=L‘—V = v; S — -1, andvisgl—v+1

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

UNI

ApprOXImatlon AlgOrlthm TV(Q? €y V(S"B

FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof: Ve v(S)
e We have
eV eV sV vin
5= Yo T Yoy (1)
. n J n y 474
IES* IES™ IES \\ LES (

* Therefore o
v(S*) = z v, < — |S| + Zvl eV + v(S) ssv(S)

—_—

lES* lES +V(§)

— T

* We have v(5§*) = V and therefore
(1—¢) - v(s*) <v(S)

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Approximation Schemes g
&

UNI
FREIBURG

For every parameter € > 0, the knapsack algorithm computes a

(1 4 &)-approximation in time 0(n>/¢).
e———

For every fixed &, we therefore get a polynomial time

approximation algorithm
(1-€)

An algorithm that computes an (1 + &)-approximation for every
g > 0 is called an approximation scheme.

If the running time is polynomial for every fixedag, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

=

If the running time is also polynomial in 1/¢, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

—

Thus, the described alg. is an FPTAS for the knapsack problem

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

