
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Approximation Ratio

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐢𝐧
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 > 0 and value 𝑣𝑖 > 0

• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at most
𝑊 and total value is maximized:

max෍

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊 time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Knapsack: Dynamic Programming Alg.

We have seen:

• If all item weights 𝑤𝑖 are integers, using dynamic programming,
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr.
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Knapsack: Dynamic Programming Alg.

We have seen:

• If all item weights 𝑤𝑖 are integers, using dynamic programming,
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr.
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.

Problems:

• If 𝑊 and 𝑉 are large, the algorithms are not polynomial in 𝑛

• If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

• Can we adapt one of the algorithms to at least compute an
approximate solution?

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Approximation Algorithm

• The algorithm has a parameter 𝜀 > 0

• We assume that each item alone fits into the knapsack

• We define:

𝑉 ≔ max
1≤𝑖≤𝑛

𝑣𝑖 , ∀𝑖: ෝ𝑣𝑖 ≔
𝑣𝑖𝑛

𝜀𝑉
, ෠𝑉 ≔ max

1≤𝑖≤𝑛
ෝ𝑣𝑖

• We solve the problem with integer values ෝ𝑣𝑖 and weights 𝑤𝑖

using dynamic programming in time 𝑂(𝑛2 ⋅ ෠𝑉)

• If solution value < 𝑉, we take item with value 𝑉 instead

Theorem: The described algorithm runs in time 𝑂 Τ𝑛3 𝜀 .

Proof:

෠𝑉 = max
1≤𝑖≤𝑛

ෝ𝑣𝑖 = max
1≤𝑖≤𝑛

𝑣𝑖𝑛

𝜀𝑉
=

𝑉𝑛

𝜀𝑉
=

𝑛

𝜀

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 − 𝜀.

Proof:

• Define the set of all feasible solutions (subsets of [𝑛])

𝒮 ≔ 𝑆 ⊆ 1,… , 𝑛 ∶ ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• 𝑣 𝑆 : value of solution 𝑆 w.r.t. values 𝑣1, 𝑣2, …
ො𝑣 𝑆 : value of solution 𝑆 w.r.t. values ො𝑣1, ො𝑣2, …

• 𝑆∗: an optimal solution w.r.t. values 𝑣1, 𝑣2, …
መ𝑆 : an optimal solution w.r.t. values ො𝑣1, ො𝑣2, …

• Weights are not changed at all, hence, መ𝑆 is a feasible solution

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 − 𝜀.

Proof:

• We have

𝑣(𝑆∗) = ෍

𝑖∈𝑆∗

𝑣𝑖 = max
𝑆∈𝒮

෍

𝑖∈𝑆

𝑣𝑖 ,

ො𝑣 መ𝑆 =෍

𝑖∈ መ𝑆

ො𝑣𝑖 = max
𝑆∈𝒮

෍

𝑆∈𝒮

ෝ𝑣𝑖

• Because every item fits into the knapsack, we have

∀𝑖 ∈ 1,… , 𝑛 : 𝑣𝑖 ≤ 𝑉 ≤ ෍

𝑗∈𝑆∗

𝑣𝑗

• Also: ෝ𝑣𝑖 =
𝑣𝑖𝑛

𝜀𝑉
⟹ 𝑣𝑖 ≤

𝜀𝑉

𝑛
⋅ ෝ𝑣𝑖, and ෝ𝑣𝑖 ≤

𝑣𝑖𝑛

𝜀𝑉
+ 1

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 − 𝜀.

Proof:

• We have

𝑣 𝑆∗ = ෍

𝑖∈𝑆∗

𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅ ෍

𝑖∈𝑆∗

ෝ𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅෍

𝑖∈ መ𝑆

ෝ𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅෍

𝑖∈ መ𝑆

1 +
𝑣𝑖𝑛

𝜀𝑉

• Therefore

𝑣 𝑆∗ = ෍

𝑖∈𝑆∗

𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅ መ𝑆 +෍

𝑖∈ መ𝑆

𝑣𝑖 ≤ 𝜀𝑉 + 𝑣 መ𝑆

• We have 𝑣 𝑆∗ ≥ 𝑉 and therefore

𝟏 − 𝜺 ⋅ 𝒗 𝑺∗ ≤ 𝒗 ෡𝑺

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Approximation Schemes

• For every parameter 𝜀 > 0, the knapsack algorithm computes a
(1 + 𝜀)-approximation in time 𝑂(Τ𝑛3 𝜀).

• For every fixed 𝜀, we therefore get a polynomial time
approximation algorithm

• An algorithm that computes an (1 + 𝜀)-approximation for every
𝜀 > 0 is called an approximation scheme.

• If the running time is polynomial for every fixed 𝜀, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

• If the running time is also polynomial in 1/𝜀, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

• Thus, the described alg. is an FPTAS for the knapsack problem

