Chapter 9
Online Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Online Computations

UNI
f

FREIBURG

* Sometimes, an algorithm has to start processing the input
before the complete input is known

* For example, when storing data in a data structure, the
sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output
step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole
input before computing the output.

 Some problems are inherently online

— Especially when real-time requests have to be processed over a
significant period of time

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Competitive Ratio

UNI
FREIBURG

* Let’s again consider optimization problems

— For simplicity, assume, we have a minimization problem

Optimal offline solution OPT (I):

* Best objective value that an offline algorithm can achieve for a
given input sequence [

Online solution ALG(I):
e Objective value achieved by an online algorithm ALG on [

Competitive Ratio: An algorithm has competitive ratioc = 1 if
ALG(I) < c-OPT() + «a.

 Ifa = 0, we say that ALG is strictly c-competitive.

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Paging Algorithm

UNI
FREIBURG

Assume a simple memory hierarchy:

fast memory of size k

coe slow memory

If a memory page has to be accessed:

Page in fast memory (hit): take page from there
Page not in fast memory (miss): leads to a page fault

Page fault: the page is loaded into the fast memory and some
page has to be evicted from the fast memory

Paging algorithm: decides which page to evict
Classical online problem: we don’t know the future accesses

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Paging Strategies

UNI
f

FREIBURG

Least Recently Used (LRU):
* Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):
* Replace the page that has been in the fast memory longest

Last In First Out (LIFO):
* Replace the page most recently moved to fast memory

Least Frequently Used (LFU):
 Replace the page that has been used the least

Longest Forward Distance (LFD):
* Replace the page whose next request is latest (in the future)
 LFDis not an online strategy!

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

UNI

LFD is Optimal

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
* For contradiction, assume that LFD is not optimal

* Then there exists a finite input sequence o on which LFD is not
optimal (assume that the length of g is |o| = n)

* Let OPT be an optimal solution for o such that
— OPT processes requests 1, ..., i in exactly the same way as LFD
— OPT processes request i + 1 differently than LFD

— Any other optimal strategy processes one of the first i + 1 requests
differently than LFD

* Hence, OPT is the optimal solution that behaves in the same way
as LFD for as long as possible 2 we havei < n

e Goal: Construct OPT' that is identical with LFD forreq. 1, ...,i + 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

UNI

LFD is Optimal

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 1: Request i + 1 does not lead to a page fault

* LFD does not change the content of the fast memory

* OPT behaves differently than LFD
— OPT replaces some page in the fast memory

— Asup torequesti + 1, both algorithms behave in the same way, they also
have the same fast memory content

— OPT therefore does not require the new page for requesti + 1

— Hence, OPT can also load that page later (without extra cost) 2 OPT’

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

UNI

LFD is Optimal

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

 LFD and OPT move the same page into the fast memory, but they
evict different pages

— |f OPT loads more than one page, all pages that are not required for
request i + 1 can also be loaded later

* Say, LFD evicts page p and OPT evicts page p’

By the definition of LFD, p’ is required again before page p

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

i+1 ' < £:0OPTevictsp j':nextreq.forp’ j:nextreq.forp
I I I I I >
LFD evicts p £ < j': OPT loads p’ (for first time after i + 1)

OPT evicts p’

a) OPT keeps p in fast memory until request

— Evictp atrequest i + 1, keep p' instead and load p (instead of p’) back
into the fast memory at request ¢

b) OPT evicts p at request £’ < ¥
— Evictp atrequesti + 1 and p’ at request €’ (switch evictions of p and p’)

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Phase Partition

UNI
f

FREIBURG

We partition a given request sequence o into phases as follows:
* Phase 0: empty sequence
* Phase i : maximal sequence that immediately follows phase

[— 1 and contains at most k distinct page requests
Example sequence (k = 4):

2,5,12,5,4,2,10,8,3,6,2,2,6,6,8,3,2,6,9,10,6,3,10,2,1, 3,5

Phase i Interval: interval starting with the second request of phase i
and ending with the first request of phasei + 1
* If the last phase is phase p, phase i interval is defined fori =1,...,p—1

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Optimal Algorithm

UNI
f

FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase
i interval (fori =1, ...,p — 1, where p is the number of phases).

Proof: phase i interval
A
N
requests:| oo q’ coe
phase i phase i + 1

* q isin fast memory after first request of phase i
 Number of distinct requests in phase i: k

* By maximality of phase i: g’ does not occur in phase i
* Number of distinct requests # g in phase interval i: k

—> at least one page fault

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

LRU and FIFO Algorithms

UNI

FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase i
interval (fori = 1, ...,p — 1, where p is the number of phases).

Corollary: The number of page faults of an optimal offline
algorithm is at least p — 1, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a
competitive ratio of at most k.

Proof:
* We will show that both have at most k page faults per phase
* We then have (for every input I):

LRU(D),FIFO(I) <k -p <k -OPT() + k

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

UNI

LRU and FIFO Algorithms

FREIBURG

Theorem: The LRU and the FIFO algorithms both have a
competitive ratio of at most k.

Proof:

* Need to show that both have at most k page faults per phase
e LRU:

— The k last pages used are the k least recently used
— Throughout a phase i, the k distinct pages of phase i are the l.r.u.

— Once in the fast memory, these pages are therefore not evicted until the
end of the phase

* FIFO:

— In each page fault in phase i, one of the k pages of phase i is loaded into
fast memory

— Once a page is loaded in a page fault of phase i it belongs to the least k
pages loaded into fast memory throughout the rest of the phase

— Hence: Each of the k pages leads to < 1 page fault in phase i
Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Lower Bound

UNI

FREIBURG

Theorem: Even if the slow memory contains only k + 1 pages,
any deterministic algorithm has competitive ratio at least k.

Proof:

Consider some given deterministic algorithm ALG

Because ALG is deterministic, the content of the fast memory
after the first i requests is determined by the first i requests.

Construct a request sequence inductively as follows:
— Assume some initial slow memory content

— The (i + 1)t request is for the page which is not in fast memory after
the first i requests (throughout we only use k + 1 different pages)

There is a page fault for every request

OPT has a page fault at most every k requests
— There is always a page that is not required for the next k — 1 requests

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Randomized Algorithms

UNI

* We have seen that deterministic paging algorithms cannot be
better than k-competitive

* Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio ¢ = 1 if for all inputs I,

E[ALG(I)] < ¢ - OPT(I) + a.

 Ifa <0, wesay that ALG is strictly c-competitive.

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

FREIBURG

Adversaries

UNI

* For randomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

Oblivious Adversary:

* Has to determine the complete input sequence before the
algorithm starts

— The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:
 The input sequence is constructed during the execution

* When determining the next input, the adversary knows how the
algorithm reacted to the previous inputs

* Input sequence depends on the random behavior of the alg.
 Sometimes, two adaptive adversaries are distinguished

— offline, online : different way of measuring the adversary cost
Algorithm Theory, WS 2016/17 Fabian Kuhn 16

FREIBURG

