
Chapter 9

Online Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Online Computations

• Sometimes, an algorithm has to start processing the input
before the complete input is known

• For example, when storing data in a data structure, the
sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output
step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole
input before computing the output.

• Some problems are inherently online
– Especially when real-time requests have to be processed over a

significant period of time

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Competitive Ratio

• Let’s again consider optimization problems
– For simplicity, assume, we have a minimization problem

Optimal offline solution 𝐎𝐏𝐓(𝑰):

• Best objective value that an offline algorithm can achieve for a
given input sequence 𝐼

Online solution 𝐀𝐋𝐆(𝑰):

• Objective value achieved by an online algorithm ALG on 𝐼

Competitive Ratio: An algorithm has competitive ratio 𝑐 ≥ 1 if

𝐀𝐋𝐆 𝑰 ≤ 𝒄 ⋅ 𝐎𝐏𝐓 𝑰 + 𝜶.

• If 𝛼 = 0, we say that ALG is strictly 𝑐-competitive.

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Paging Algorithm

Assume a simple memory hierarchy:

If a memory page has to be accessed:

• Page in fast memory (hit): take page from there

• Page not in fast memory (miss): leads to a page fault

• Page fault: the page is loaded into the fast memory and some
page has to be evicted from the fast memory

• Paging algorithm: decides which page to evict

• Classical online problem: we don’t know the future accesses

⋯

fast memory of size 𝒌

slow memory

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Paging Strategies

Least Recently Used (LRU):

• Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):

• Replace the page that has been in the fast memory longest

Last In First Out (LIFO):

• Replace the page most recently moved to fast memory

Least Frequently Used (LFU):

• Replace the page that has been used the least

Longest Forward Distance (LFD):

• Replace the page whose next request is latest (in the future)

• LFD is not an online strategy!

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

• For contradiction, assume that LFD is not optimal

• Then there exists a finite input sequence 𝜎 on which LFD is not
optimal (assume that the length of 𝜎 is 𝜎 = 𝑛)

• Let OPT be an optimal solution for 𝜎 such that
– OPT processes requests 1,… , 𝑖 in exactly the same way as LFD

– OPT processes request 𝑖 + 1 differently than LFD

– Any other optimal strategy processes one of the first 𝑖 + 1 requests
differently than LFD

• Hence, OPT is the optimal solution that behaves in the same way
as LFD for as long as possible we have 𝑖 < 𝑛

• Goal: Construct OPT′ that is identical with LFD for req. 1,… , 𝑖 + 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 1: Request 𝑖 + 1 does not lead to a page fault

• LFD does not change the content of the fast memory

• OPT behaves differently than LFD
 OPT replaces some page in the fast memory

– As up to request 𝑖 + 1, both algorithms behave in the same way, they also
have the same fast memory content

– OPT therefore does not require the new page for request 𝑖 + 1

– Hence, OPT can also load that page later (without extra cost) OPT′

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request 𝑖 + 1 does lead to a page fault

• LFD and OPT move the same page into the fast memory, but they
evict different pages
– If OPT loads more than one page, all pages that are not required for

request 𝑖 + 1 can also be loaded later

• Say, LFD evicts page 𝑝 and OPT evicts page 𝑝′

• By the definition of LFD, 𝑝′ is required again before page 𝑝

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request 𝑖 + 1 does lead to a page fault

a) OPT keeps 𝑝 in fast memory until request ℓ
– Evict 𝑝 at request 𝑖 + 1, keep 𝑝′ instead and load 𝑝 (instead of 𝑝′) back

into the fast memory at request ℓ

b) OPT evicts 𝑝 at request ℓ′ < ℓ
– Evict 𝑝 at request 𝑖 + 1 and 𝑝′ at request ℓ′ (switch evictions of 𝑝 and 𝑝′)

𝑖 + 1

LFD evicts 𝑝
OPT evicts 𝑝′

𝑗′: next req. for 𝑝′ 𝑗: next req. for 𝑝

ℓ ≤ 𝑗′: OPT loads 𝑝′ (for first time after 𝑖 + 1)

ℓ′ < ℓ: OPT evicts 𝑝

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Phase Partition

We partition a given request sequence 𝜎 into phases as follows:

• Phase 𝟎: empty sequence

• Phase 𝒊 : maximal sequence that immediately follows phase
𝑖 − 1 and contains at most 𝑘 distinct page requests

Example sequence (𝒌 = 𝟒):

2, 5, 12, 5, 4, 2, 10, 8, 3, 6, 2, 2, 6, 6, 8, 3, 2, 6, 9, 10, 6, 3, 10, 2, 1, 3, 5

Phase 𝒊 Interval: interval starting with the second request of phase 𝑖
and ending with the first request of phase 𝑖 + 1
• If the last phase is phase 𝑝, phase 𝑖 interval is defined for 𝑖 = 1,… , 𝑝 − 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Optimal Algorithm

Lemma: Algorithm LFD has at least one page fault in each phase
𝑖 interval (for 𝑖 = 1,… , 𝑝 − 1, where 𝑝 is the number of phases).

Proof:

• 𝑞 is in fast memory after first request of phase 𝑖

• Number of distinct requests in phase 𝑖: 𝑘

• By maximality of phase 𝑖: 𝑞′ does not occur in phase 𝑖

• Number of distinct requests ≠ 𝑞 in phase interval 𝑖: 𝑘

 at least one page fault

𝒒 𝒒′⋯ ⋯requests:

phase 𝒊 phase 𝒊 + 𝟏

phase 𝒊 interval

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

LRU and FIFO Algorithms

Lemma: Algorithm LFD has at least one page fault in each phase 𝑖
interval (for 𝑖 = 1,… , 𝑝 − 1, where 𝑝 is the number of phases).

Corollary: The number of page faults of an optimal offline
algorithm is at least 𝑝 − 1, where 𝑝 is the number of phases

Theorem: The LRU and the FIFO algorithms both have a
competitive ratio of at most 𝑘.

Proof:

• We will show that both have at most 𝑘 page faults per phase

• We then have (for every input 𝐼):

LRU 𝐼 , FIFO 𝐼 ≤ 𝑘 ⋅ 𝑝 ≤ 𝑘 ⋅ OPT 𝐼 + 𝑘

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

LRU and FIFO Algorithms

Theorem: The LRU and the FIFO algorithms both have a
competitive ratio of at most 𝑘.

Proof:

• Need to show that both have at most 𝑘 page faults per phase

• LRU:
– The 𝑘 last pages used are the 𝑘 least recently used

– Throughout a phase 𝑖, the 𝑘 distinct pages of phase 𝑖 are the l.r.u.

– Once in the fast memory, these pages are therefore not evicted until the
end of the phase

• FIFO:
– In each page fault in phase 𝑖, one of the 𝑘 pages of phase 𝑖 is loaded into

fast memory

– Once a page is loaded in a page fault of phase 𝑖 it belongs to the least 𝑘
pages loaded into fast memory throughout the rest of the phase

– Hence: Each of the 𝑘 pages leads to ≤ 1 page fault in phase 𝑖

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Lower Bound

Theorem: Even if the slow memory contains only 𝑘 + 1 pages,
any deterministic algorithm has competitive ratio at least 𝑘.

Proof:

• Consider some given deterministic algorithm ALG

• Because ALG is deterministic, the content of the fast memory
after the first 𝑖 requests is determined by the first 𝑖 requests.

• Construct a request sequence inductively as follows:
– Assume some initial slow memory content

– The 𝑖 + 1 st request is for the page which is not in fast memory after
the first 𝑖 requests (throughout we only use 𝑘 + 1 different pages)

• There is a page fault for every request

• OPT has a page fault at most every 𝑘 requests
– There is always a page that is not required for the next 𝑘 − 1 requests

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Randomized Algorithms

• We have seen that deterministic paging algorithms cannot be
better than 𝑘-competitive

• Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio 𝑐 ≥ 1 if for all inputs 𝐼,

𝔼 𝐀𝐋𝐆 𝑰 ≤ 𝒄 ⋅ 𝐎𝐏𝐓 𝑰 + 𝜶.

• If 𝛼 ≤ 0, we say that ALG is strictly 𝑐-competitive.

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Adversaries

• For randomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

Oblivious Adversary:

• Has to determine the complete input sequence before the
algorithm starts
– The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

• The input sequence is constructed during the execution

• When determining the next input, the adversary knows how the
algorithm reacted to the previous inputs

• Input sequence depends on the random behavior of the alg.

• Sometimes, two adaptive adversaries are distinguished
– offline, online : different way of measuring the adversary cost

