Chapter 9
 Online Algorithms

Online Computations

- Sometimes, an algorithm has to start processing the input before the complete input is known
- For example, when storing data in a data structure, the sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole input before computing the output.

- Some problems are inherently online
- Especially when real-time requests have to be processed over a significant period of time

Competitive Ratio

- Let's again consider optimization problems
- For simplicity, assume, we have a minimization problem

Optimal offline solution OPT(I):

- Best objective value that an offline algorithm can achieve for a given input sequence I

Online solution ALG(I):

- Objective value achieved by an online algorithm ALG on I

Competitive Ratio: An algorithm has competitive ratio $c \geq 1$ if

$$
\underline{\underline{\operatorname{ALG}(I)}} \leq c \cdot \underline{\operatorname{OPT}(I)}+\underline{\underline{\alpha}}
$$

- If $\alpha=0$, we say that ALG is strictly c-competitive.

Paging Algorithm

Assume a simple memory hierarchy:

fast memory of size $\underset{\underset{k}{k}}{\underline{k}}$

If a memory page has to be accessed:

- Page in fast memory (hit): take page from there
- Page not in fast memory (miss): leads to a page fault
- Page fault: the page is loaded into the fast memory and some page has to be evicted from the fast memory
- Paging algorithm: decides which page to evict
- Classical online problem: we don't know the future accesses

Paging Strategies

Least Recently Used (LRU):

- Replace the page that hasn't been used for the longest time

First In First Out (FIFO):

- Replace the page that has been in the fast memory longest

Last In First Out (LIFO):

- Replace the page most recently moved to fast memory

Least Frequently Used (LFU):

- Replace the page that has been used the least

Longest Forward Distance (LFD): optimal offlive algonthm

- Replace the page whose next request is latest (in the future)
- LFD is not an online strategy!

Optimal Algorithm

Lemma: Algorithm LFD has at least one page fault in each phase i interval (for $i=1, \ldots, p-1$, where p is the number of phases).

Proof:

phase \boldsymbol{i} interval
requests:

- q is in fast memory after first request of phase i
- Number of distinct requests in phase $i: k$
- By maximality of phase $i: q^{\prime}$ does not occur in phase i
- Number of distinct requests $\neq q$ in phase interval $i: k$
\rightarrow at least one page fault

LRU and FIFO Algorithms

Lemma: Algorithm LFD has at least one page fault in each phase i interval (for $i=1, \ldots, p-1$, where p is the number of phases).

Corollary: The number of page faults of an optimal offline algorithm is at least $p-1$, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most k.

Proof:

- We will show that both have at most k page faults per phase
- We then have (for every input I):

$$
\operatorname{LRU}(I), \operatorname{FIFO}(I) \leq k \cdot p \leq k \cdot \operatorname{OPT}(I)+k
$$

Lower Bound

Theorem: Even if the slow memory contains only $k+1$ pages, any deterministic algorithm has competitive ratio at least k.

Proof:

- Consider some given deterministic algorithm ALG
- Because ALG is deterministic, the content of the fast memory after the first i requests is determined by the first i requests.
- Construct a request sequence inductively as follows:
- Assume some initial slow memory content
- The $(i+1)^{\text {st }}$ request is for the page which is not in fast memory after the first i requests (throughout we only use $k+1$ different pages)
- There is a page fault for every request
- OPT has a page fault at most every k requests
- There is always a page that is not required for the next $k-1$ requests

Randomized Algorithms

- We have seen that deterministic paging algorithms cannot be better than k-competitive
- Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has competitive ratio $c \geq 1$ if for all inputs I,

$$
\mathbb{E}[\operatorname{ALG}(I)] \leq c \cdot \operatorname{OPT}(I)+\alpha .
$$

- If $\alpha \leq 0$, we say that ALG is strictly c-competitive.

Adversaries

- For randomized algorithm, we need to distinguish between different kinds of adversaries (providing the input)

Oblivious Adversary:

- Has to determine the complete input sequence before the algorithm starts
- The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

- The input sequence is constructed during the execution
- When determining the next input, the adversary knows how the algorithm reacted to the previous inputs
- Input sequence depends on the random behavior of the alg.
- Sometimes, two adaptive adversaries are distinguished
- offline, online : different way of measuring the adversary cost

Lower Bound

The adversaries can be ordered according to their strength

$$
\text { oblivious }<\text { online adaptive }<\text { offline adaptive }
$$

- An algorithm that achieves a given comp. ratio with an adaptive adversary is at least as good with an oblivious one
- A lower bound that holds against an oblivious adversary also holds for the two adaptive adversaries
- ...

Theorem: No randomized paging algorithm can be better than k-competitive against an adaptive adversary.
Proof: The same proof as for deterministic algorithms works.

- Are there better algorithms with an oblivious adversary?

The Randomized Marking Algorithm

- Every entry in fast memory has a marked flag

- Initially, all entries are unmarked.
- If a page in fast memory is accessed, it gets marked
- When a page fault occurs:
- If all k pages in fast memory are marked, all marked bits are set to 0
- The page to be evicted is chosen uniformly at random among the unmarked pages
- The marked bit of the new page in fast memory is set to 1

Example

Input Sequence (k=6):
$\underbrace{2,5,3,3,6,8,2,9,5}_{\text {phase } 1}, \underbrace{\sqrt[5]{6}}_{\text {phase } 2}(\frac{1}{1},(2,(5), 2,(3,7,7,4, \underbrace{8,1,2,7,5,3,}_{\text {phase } 3}, \underbrace{6,9,6,10,4,1,2}_{\text {phase } 4} \ldots$

Fast Memory:

\section*{| 10 | 6 | 1 | 9 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Observations:

- At the end of a phase, the fast memory entries are exactly the k pages of that phase
- At the beginning of a phase, all entries get unmarked
- \#page faults depends on \#new pages in a phase

Page Faults per Phase

Consider a fixed phase \boldsymbol{i} :

- Assume that of the k pages of phase i, m_{i} are new and $\underline{\underline{k-m_{i}}}$ are old (i.e., they already appear in phase $i-1$)
- All m_{i} new pages lead to page faults (when they are requested for the first time)
- When requested for the first time, an old page leads to a page fault, if the page was evicted in one of the previous page faults

- We need to count the number of page faults for old pages

Page Faults per Phase

Phase $i, j^{\text {th }}$ old page that is requested (for the first time):

- There is a page fault if the page has been evicted
- There have been at most $\underline{m_{i}}+\underline{j-1}$ distinct requests before
- The old places of the $j-1$ first old pages are occupied
- The other $\leq m_{i}$ pages are at uniformly random places among the remaining $k-(j-1)$ places (oblivious adv.)
- Probability that the old place of the $j^{\text {th }}$ old page is taken:

$$
\leq \frac{m_{i}}{k-(j-1)}
$$

Phase $i>1, \boldsymbol{j}^{\text {th }}$ old page that is requested (for the first time):

- Probability that there is a page fault: $F_{i}=\sum_{j=1} F_{i j}$

$$
\mathbb{E}\left[F_{i j}\right]=\mathbb{P}\left(F_{i j}=1\right) \leq \frac{m_{i}}{k-(j-1)}
$$

Number of page faults for old pages in phase $\boldsymbol{i}: \boldsymbol{F}_{\boldsymbol{i}}$

$$
\begin{aligned}
& \underline{\underline{E}\left[F_{i}\right]}=\sum_{\substack{j=1 \\
k-m_{i}}}^{\mathbb{P}\left(j^{\text {th }} \text { old page incurs page fault }\right)} \\
& \leq \sum_{j=1}^{k-m_{i}} \frac{m_{i}}{k-(j-1)}=\underline{m_{i}} \cdot \sum_{\ell=m_{i}+1}^{k} \frac{1}{\ell} \\
&=m_{i} \cdot\left(H(k)-H\left(m_{i}\right)\right) \leq \frac{m_{i}}{\underline{m_{i}}} \cdot(H(k)-1) \\
& H(k)=1+\frac{1}{2}+\ldots+\frac{1}{k}
\end{aligned}
$$

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2 H(k) \leq 2 \ln (k)+2$.

Proof:

- Assume that there are p phases
- \#page faults of rand. marking algorithm in phase $i: \underline{\underline{F_{i}}}+\underline{\underline{m_{i}}}$
- We have seen that

$$
\mathbb{E}\left[F_{i}\right] \leq m_{i} \cdot(H(k)-1) \leq m_{i} \cdot \ln (k)
$$

- Let $\underset{\underline{F}}{ }$ be the total number of page faults of the algorithm:

$$
\mathbb{E}[F] \leq \sum_{i=1}^{p}(\underbrace{\left(\mathbb{E}\left[F_{i}\right]+m_{i}\right)}_{\leqslant m_{i} \cdot H(k)} \leq H(k) \cdot \sum_{i=1}^{p} m_{i}
$$

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2 H(k) \leq 2 \ln (k)+2$.

Proof:

- Let F_{i}^{*} be the number of page faults in phase i in an opt. exec.
- Phase 1: m_{1} pages have to be replaced $\rightarrow \underline{F_{1}^{*} \geq m_{1}}$
- Phase $i>1$:
- Number of distinct page requests in phases $i-1$ and $i: \underline{\underline{\boldsymbol{k}+\boldsymbol{m}_{\boldsymbol{i}}}}$
- Therefore, $F_{i-1}^{*}+F_{i}^{*} \geq \frac{m_{i}}{\text { fachts }}$
- Total number of page requests. F^{*} :

$$
F^{*}=\underbrace{\sum_{i=1}^{p} F_{i}^{*}}_{\text {m Theory, ws 2017/18 }} \geq \frac{1}{2} \cdot \underbrace{\substack{\sum F_{i}^{*}-\frac{T_{i}^{*}}{2}}}_{\text {Fabian Kuhn }} \underbrace{F^{2}}_{F_{1}^{*}+\sum_{i=2}^{p}\left(F_{i-1}^{*}+F_{i}^{*}\right)} \geq \frac{1}{2} \cdot \sum_{i=1}^{p} m_{i}
$$

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2 H(k) \leq 2 \ln (k)+2$.

Proof:

- Randomized marking algorithm:

$$
\underline{\underline{\mathbb{E}[F]}} \leq \underline{H(k)} \cdot \sum_{i=1}^{p} m_{i}
$$

- Optimal algorithm:

$$
F^{*} \geq \frac{1}{2} \cdot \sum_{i=1}^{p} m_{i}
$$

Remark: We next show that no randomized algorithm has a competitive ratio better than $H(k)$ (against an obl. adversary)

Randomized Lower Bound

Yao's Principle (more precisely Yao's Minimax Principle):
exp. cost of best randomized alg. for worst-case input酎》
exp. cost of best deterministic alg. for a given random input distr.

Proving a lower bound using Yao's principle:

- Design a random input distribution
- Show that every deterministic algorithm has a bad expected competitive ratio if the input is chosen at random according to this distribution
- Yao's principle then implies that every randomized algorithm is at least equally bad for worst-case input
- worst-case fixed input: holds even for oblivious adversary

Randomized Paging Lower Bound

Input Distribution

- There are $k+1$ different pages int the stomemory
- In each step, a uniformly random page is requested

Deterministic Online Algorithms

- Consider some request i

- Current state of the fast memory depends on requests $i-1$ and on the algorithm, assume that page p is not in fast memory
- $\mathbb{P}($ page fault $)=\mathbb{P}($ request for page $p)=\frac{1}{k+1}$
- Expected \#page faults after n requests:

$$
\overline{k+1}
$$

Randomized Paging Lower Bound

Best Offline Algorithm: Longest Forward Distance

- After each page fault, optimal offline algorithm doads the page that will not be used for the longest possible time
- After a page fault, all $k+1$ pages are requested at least once before the next page fault time between two page faults $=$ time to request each page at least once $\quad \mathbf{- 1}$

Claim: If $T=$ time to request each page once, then coupm collector

$$
\mathbb{E}[T]=(k+1) \cdot H(k+1) \quad \text { process }
$$

- For $i \in\{0, \ldots, k+1\}: T_{i}$ time to request $i^{t h}$ page after

- Probability for req. $i^{\text {th }}$ page after requesting $i-1$ diff. pages:

$$
p_{i}=\frac{k+1-(i-1)}{k+1}
$$

Randomized Paging Lower Bound
Claim: If $T=$ time to request each page once, then

$$
\mathbb{E}[T]=(k+\mathbf{1}) \cdot H(k+\mathbf{1})
$$

- For $i \in\{0, \ldots, k+1\}: T_{i}$ time to request $i^{\text {th }}$ page after requesting $i-1$ different pages
- Prob. for req. $i^{\text {th }}$ page after req. $i-1$ diff. pages: $p_{i}=\frac{k+1-(i-1)}{k+1}$

$$
\begin{aligned}
T & =T_{1}+T_{2}+T_{3}+T_{4}+\ldots+T_{k+1} \\
T_{i} & \sim G_{\operatorname{Geom}\left(p_{i}\right) \quad \mathbb{E}\left[T_{i}\right]=\frac{1}{P_{i}}=\frac{k+1}{k+1-(i-1)}=(k+1) \cdot \frac{1}{k+1-(i-1)}}^{\mathbb{E}[T]=\sum_{i=1}^{k+1} \mathbb{E}\left[T_{i}\right]=(k+1) \cdot \sum_{i=1}^{k+1} \frac{1}{k+1-(i-1)}}=(k+1) \sum_{j=1}^{k+1} \frac{1}{j} \\
& =(k+1) \cdot H((k+1)
\end{aligned}
$$

Randomized Paging Lower Bound

Claim: For $k+1$ pages and n uniformly random requests, the optimal expected number $\overrightarrow{\mathrm{f}}$ page faults is at most

Prof Sketch

$$
\frac{n}{(k+1) \cdot H(k)}-1
$$

- Average time \bar{T} between page faults

$$
\begin{aligned}
& \mathbb{E}[\bar{T}]=\underline{E}=\underline{E}[T]-1=(k+1) H(k+1)-1=(k+1) \cdot H(k) \\
& \text { ier of page faults } X=\ln / \bar{T} \mid \geq n-1
\end{aligned}
$$

- Number of page faults $X=\lfloor n / \bar{T}\rfloor \geqslant \frac{n}{\overline{\bar{T}}-1}$

$$
\underline{\mathbb{E}[X]}=\mathbb{E}\left[\left[\begin{array}{l}
n \\
\overline{\bar{T}}
\end{array}\right]\right] \geq \mathbb{E}\left[\begin{array}{l}
n \\
\overline{\bar{T}}
\end{array}\right]-1 \geqq \frac{n}{\mathbb{E}[\bar{T}]}-1
$$

Jensen's ing.

$$
\mathbb{E}\left[\frac{1}{x}\right]^{p_{1}}=\mathbb{R}\left(x=x_{0}\right) \cdot \cdot \frac{1}{x_{0}} \mathbb{P}\left(x_{-x_{0}}\right) \cdot \frac{1}{x_{1}}
$$

Randomized Paging Lower Bound

Theorem: Every randomized paging algorithm has competitive ratio at least $H(k)$ even for an oblivious adversary.

1. Assume we $k+1$ pages and uniformly random page requests
2. Expected number of page faults of best deterministic algorithm

$$
=\frac{n}{k+1}
$$

3. Expected number of page faults of optimal algorithm

$$
\geq \frac{n}{(k+1) \cdot H(k)}-1
$$

4. Yao's principle now proves the theorem

- not really necessary here, step 2 also works directly for randomized alg.

Self-Adjusting Lists

- Linked lists are often inefficient
- Cost of accessing an item at position i is linear in i
- But, linked lists are extremely simple
- And therefore nevertheless interesting
- Can we at least improve the behavior of linked lists?
- In practical applications, not all items are accessed equally often and not equally distributed over time
- The same items might be used several times over a short period of time
- Idea: rearrange list after accesses to optimize the structure for future accesses
- Problem: We don't know the future accesses
- The list rearrangement problems is an online problem!

Model

- Only find operations (i.e., access some item)
- Let's ignore insert and delete operations
- Results can be generalized to cover insertions and deletions

Cost Model:

- Accessing item at position i costs i

- The only operation allowed for rearranging the list is swapping two adjacent list items
- Swapping any two adjacent items costs 1

Rearranging The List

Frequency Count (FC):

- For each item keep a count of how many times it was accessed
- Keep items in non-increasing order of these counts
- After accessing an item, increase its count and move it forward past items with smaller count

Move-To-Front (MTF):

- Whenever an item is accessed, move it all the way to the front

Transpose (TR):

- After accessing an item, swap it with its predecessor

Cost

Cost when accessing item at position \boldsymbol{i} :

- Frequency Count (FC): between i and $2 i-1$
- Move-To-Front (MTF): $2 i-1$
- Transpose (TR): $i+1$

Random Accesses:

- If each item x has an access probability p_{x} and the items are accessed independently at random using these probabilities, FC and TR are asymptotically optimal

$$
\begin{aligned}
& n \text { requests } \\
& \text { any. cost per reg. } n \rightarrow \infty
\end{aligned}
$$

Real access patterns are not random, TR usually behaves badly and the much simpler MTF often beats FC

Move-To-Front

- We will see that MTF is competitive
- To analyze MTF we need competitive analysis and amortized analysis

Operation k :

- Assume, the operation accesses item \underline{x} at position \underline{i}
- $\boldsymbol{c}_{\boldsymbol{k}}$: actual cost of the MTF algorithm

$$
c_{k}=\underline{2 i-1}
$$

- $\boldsymbol{a}_{\boldsymbol{k}}$: amortized cost of the MTF algorithm

$$
\begin{aligned}
& \sum c_{i} \leqslant \sum a_{i} \\
& a_{k} \leqslant \alpha \cdot c_{k}^{*}
\end{aligned}
$$

- $\boldsymbol{c}_{\boldsymbol{k}}^{*}$: actual cost of an optimal offline strategy
- Let's call the optimal offline strategy OPT
$\sum c_{i} \leq \sum a_{i} \leq a \sum c_{i}^{*}$

Potential Function

- For the analysis, we think of running the MTF and OPT at the same time
- The state of the system is determined by the two lists of MTF and OPT
- Similarly to amortized analysis for data structures, we use a potential function which maps the system state to a real number
- If the MTF list and the list of OPT are similar, the actual cost of both algorithms for most requests is roughly the same
- If the lists are very different, the costs can be very different and the potential function should have a large value to be able to compensate for the potentially high cost difference
- We therefore use a potential function which measures the difference between the MTF list and the optimal offline list

Potential Function

Potential Function $\boldsymbol{\Phi}_{\boldsymbol{k}}$:

- Inversion: pair of items x and y such that x precedes y in one list and y precedes x in the other list
- Twice the number of inversions between the lists of MTF and OPT after the first k operations
- Measure for the difference between the lists after k operations

Initially, the two lists are identical: $\boldsymbol{\Phi}_{\mathbf{0}}=\mathbf{0}$
For all k, it holds that $\mathbf{0} \leq \boldsymbol{\Phi}_{\boldsymbol{k}} \leq \mathbf{2} \cdot\binom{\boldsymbol{n}}{\mathbf{2}}=\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})$

Potential Function

$$
a_{k} \leq \alpha \cdot C_{k}^{k}
$$

Potential Function $\boldsymbol{\Phi}_{\boldsymbol{k}}$:

$$
a_{k}=c_{k}+\phi_{k}-\phi_{k-1}
$$

- Inversion: pair of items x and y such that x precedes y in one list and y precedes x in the other list
- Twice the number of inversions between the lists of MTF and OPT after the first k operations
- Measure for the difference between the lists after k operations

To show that MTF is α-competitive, we will show that

$$
\forall k: \quad a_{k}=c_{k}+\Phi_{k}-\Phi_{k-1} \leq \alpha \cdot c_{k}^{*}
$$

$$
\sum_{i=1}^{T} a_{k}=\sum_{i=1}^{T}\left(c_{k}+\phi_{k}-\phi_{k-1}\right)=\sum_{i=1}^{T} c_{k}+\phi_{T} \geqslant \sum_{i=1}^{T} c_{k}
$$

Competitive Analysis

Theorem: MTF is 4-competitive.

Proof:

- Need that $\underline{a_{k}}=c_{k}+\Phi_{k}-\Phi_{k-1} \leq \underline{4 c_{k}^{*}}$
- Position of x in list of OPT: i^{*}
- Number of swaps of OPT: $\underline{\underline{s}}^{*}$
- In MTF list, position of x is changed w.r.t. to the $i-1$ preceding items (nothing else is changed)
- For each of these items, either an inversion is created or one is destroyed (before the s^{*} swaps of OPT) $\quad i-1-\left(i^{*}-1\right)=i-i^{*}$
- Number of new inversions (before OPT's swaps) $\leq i^{*}-1$:
- Before op. k, only $i^{*}-1$ items are before x in OPT's list
- With all other items, x is ordered the same as in OPT's list after moving it to the front

Competitive Analysis

Theorem: MTF is 4-competitive.

Proof:

- Need that $a_{k}=c_{k}+\Phi_{k}-\Phi_{k-1} \leq 4 c_{k}^{*}$
- $c_{k}=2 i-1, \underline{c_{k}^{*}=i^{*}+s^{*}}$
- Number of inversions created: $\leq i^{*}-1+s^{*}$,
- Number of inversions destroyed: $\geq \underline{\underline{i-i^{*}}}$

$$
\begin{aligned}
a_{k} & =2 i-1+2\left(i^{*}-1+s^{*}-i+i^{*}\right) \\
& =2 i-1+4 i^{*}-2+2 s^{*}-2 i \\
& =4 i^{*}+2 s^{*}-3 \leq 4\left(i^{*}+s^{*}\right)=4 C_{k}^{*}
\end{aligned}
$$

