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Sequential Algorithms
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Classical Algorithm Design:
* One machine/CPU/process/... doing a computation

RAM (Random Access Machine):

* Basic standard model

e Unit cost basic operations

* Unit cost access to all memory cells

Sequential Algorithm / Program:

* Sequence of operations
(executed one after the other)
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Parallel and Distributed Algorithms
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Today’s computers/systems are not sequential:

* Even cell phones have several cores

* Future systems will be highly parallel on many levels
* This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:

* Exploit parallelism to speed up computations <——

>+ Shared resources such as memory, bandwidth, ...
* Increase reliability by adding redundancy
—> * Solve tasks in inherently decentralized environments
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Parallel and Distributed Systems
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* Many different forms

* Processors/computers/machines/... communicate and share
data through

— Shared memory or message passing

 Computation and communication can be
— Synchronous or asynchronous

* Many possible topologies for message passing

* Depending on system, various types of faults
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Challenges
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Algorithmic and theoretical challenges:

How to parallelize computations

Scheduling (which machine does what)

Load balancing

Fault tolerance

Coordination / consistency

Decentralized state

Asynchrony

Bounded bandwidth / properties of comm. channels
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Models
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* Alarge variety of models, e.g.:

[- PRAM (Parallel Random Access Machine)
— Classical model for parallel computations
 Shared Memory

— Classical model to study coordination / agreement problems,
distributed data structures, ...

* Message Passing (fully connected topology)

— Closely related to shared memory models

* Message Passing in Networks

— Decentralized computations, large parallel machines, comes in various
flavors...
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PRAM
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e Parallel version of RAM model

* p processors, shared random access memory
—————

* Basic operations / access to shared memory cost 1
« Processor operations are synchronized iwe s &vided vousds

* Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...
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Other Parallel Models
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* Message passing: Fully connected network, local memory and
information exchange using messages

 Dynamic Multithreaded Algorithms: Simple parallel
programming paradigm
— E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

[FIB(TL) @ | et
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1 if n <2 SNL®
2 then return n | ‘
3 x < spawn FIB (n—1) \\ | N \‘
4 y < spawn FIB(n — 2) “\)
Sogyme ALGORITHMS
6 return (z +y)
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Sequential Computation: Parallel Computation:

e Sequence of operations * Directed Acyclic Graph (DAG)
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Parallel Computations ¢ # == .
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T ,: time to perform comp. with p procs (

e T;:work (total # operations) ) T1 =11

e

— Time when doing the
computation sequentially |

e T.: critical path / span
— Time when parallelizing as
much as possible

e Lower Bo_t_mds:

T,

T z\—} T,>T
p p p

\%)\

4
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Parallel Computations
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T ,: time to perform comp. with p procs

* Lower Bounds:

. T, 1]
 Parallelism: — —
Teo <

— maximum possible speed-up

* Linear Speed-up:
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Scheduling
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 How to assign operations to processors?

* Generally an online problem

— When scheduling some jobs/operations, we do not know how the
computation evolves over time ‘ > v 7
N\ S

V¢
Greedy (offline) scheduling:

* Order jobs/operations as they would be scheduled optimally
with oo processors (topological sort of DAG)

p———

— Easy to determine: With oo processors, one always schedules all
jobs/ops that can be scheduled

* Always schedule as many jobs/ops as possible
* Schedule jobs/ops in the same order as with co processors

— i.e., jobs that become available earlier have priority

-
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Brent’s Theorem T

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
* Greedy scheduling achieves this...

* Hoperations scheduled with oo processors in round i: x;
==
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Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
* Greedy scheduling achieves this...

* Hoperations scheduled with oo processors in round i: x;
P prcs. t: Eiwe Yo sduedule x, ovm'\%w
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Brent’s Theorem
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Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.
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Corollary: As long as the number of processors p = O(T, /Tw), it is
possible to achieve a linear speed-up. —_—

Algorithm Theory, WS 2017/18 Fabian Kuhn 15



P *9
PRAM . T

UNI

FREIBURG

Back to the PRAM:
* Shared random access memory, synchronous computation steps

e The PRAM model comes in variants...

—~» EREW (exclusive read, exclusive write):

e

* Concurrent memory access by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
 Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior @lso concurcent read & wiile wot allowed

* This is the first variant that was considered (already in the 70s)
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PRAM
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The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified

\ — Weak CRCW: concurrent write only OK if all processors write 0
— Common-mode CRCW: all processors need to write the same value <—

— Arbitrary-winner CRCW: adversary picks one of the values «+—

— Priority CRCW: value of processor with highest ID is written€—

o — Strong CRCW: largest (or smallest) value is written 4__"’

(D, %)

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong
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Some Relations Between PRAM Models _
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Theorem: A parallel computation that can be performed in timeet,
using p proc. on a strong CRCW machine, can also be performed in
time O(t logp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by

O(logp) steps on an EREW machlne
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councu rm& w—r."(,&

CQ(\ C: auu-(mw' WA, Q(($ G halief ‘}"-L)
\n/ ﬁ/ \m’ \@’ o 4
57 g r
~ —

1)
=

Algorithm Theory, WS 2017/18 Fabian Kuhn 18



Some Relations Between PRAM Models _
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Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine
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Some Relations Between PRAM Models _
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Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

_ T
[

Theorem: A parallel computation that can be performed in time t,
using p probabilistic processors on a strong CRCW machine, can also
be performed in expected time O (t 1022) using O (p/logp)

processors on an arbitrary-winner CRCW machine. —
—_——

e The same simulation turns out more efficient in this case
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Some Relations Between PRAM Models _
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Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O(pz) processors on a weak CRCW machine

——

Proof:

* Strong: largest value wins, weak: only concurrently writing 0 is OK
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Some Relations Between PRAM Models _
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Theorem: A computation that can be performed in time ¢, using p
processors on a strong CRCW machine, can also be performed in

time O(t) using O(pz) processors on a weak CRCW machine
———— —_—————

Proof:

* Strong: largest value wins, weak: only concurrently writing 0 is OK
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Computing the Maximum
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Given: n values

—

Goal: jnd the maximum value

—

Observation: The maximum can be computed in parallel by using a

binary tree.
R "R 1 W W )3 o bedouo su an
Y W Y R Tem
\Tﬂ/ \D/ T = o)
lX - o= O fyu)
{ @ T(—‘O(%-} ")
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Computing the Maximum
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Observation: On a strong CRCW machine, the maximum of an
values can be computed in 0(1) time using n processors

—_—

e Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers

between 1 and /n can be computed in time 0(1) using O(n) proc.
? —

Proof: il (o]---] el

* We have y/n memory cells fi, ..., f, 5 for the possible values

* Initialize all f; =1
* Forthe n values x4, ..., x,,, processor j sets ij =0

— Since only zeroes are written, concurrent writes are OK

* Now, f; = 0 iff value i occurs at least once
 Strong CRCW machine: max. value in time 0(1) w. 0(1/n) proc.
* Weak CRCW machine: time O(1) using O(n) proc. (prev. lemma)
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Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using

O(n) processors on a weak CRCW machine. A
I I { | 1

Proof: \ )

+ First look at -282" highest order bits

The maximum value also has the maximum among those bits
There are only y/n possibilities for these bits

log, n

max. of highest order bits can be computed in O(1) time

log, n

For those with largest highest order bits, continue with

log, n

next block of bits, ...
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