
Chapter 10

Parallel Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Sequential Algorithms

Classical Algorithm Design:

• One machine/CPU/process/… doing a computation

RAM (Random Access Machine):

• Basic standard model

• Unit cost basic operations

• Unit cost access to all memory cells

Sequential Algorithm / Program:

• Sequence of operations
(executed one after the other)

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Parallel and Distributed Algorithms

Today’s computers/systems are not sequential:

• Even cell phones have several cores

• Future systems will be highly parallel on many levels

• This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:

• Exploit parallelism to speed up computations

• Shared resources such as memory, bandwidth, …

• Increase reliability by adding redundancy

• Solve tasks in inherently decentralized environments

• …

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Parallel and Distributed Systems

• Many different forms

• Processors/computers/machines/… communicate and share
data through
– Shared memory or message passing

• Computation and communication can be
– Synchronous or asynchronous

• Many possible topologies for message passing

• Depending on system, various types of faults

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Challenges

Algorithmic and theoretical challenges:

• How to parallelize computations

• Scheduling (which machine does what)

• Load balancing

• Fault tolerance

• Coordination / consistency

• Decentralized state

• Asynchrony

• Bounded bandwidth / properties of comm. channels

• …

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Models

• A large variety of models, e.g.:

• PRAM (Parallel Random Access Machine)
– Classical model for parallel computations

• Shared Memory
– Classical model to study coordination / agreement problems,

distributed data structures, …

• Message Passing (fully connected topology)
– Closely related to shared memory models

• Message Passing in Networks
– Decentralized computations, large parallel machines, comes in various

flavors…

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

PRAM

• Parallel version of RAM model

• 𝑝 processors, shared random access memory

• Basic operations / access to shared memory cost 1

• Processor operations are synchronized

• Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, …

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Other Parallel Models

• Message passing: Fully connected network, local memory and
information exchange using messages

• Dynamic Multithreaded Algorithms: Simple parallel
programming paradigm
– E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Parallel Computations

Sequential Computation:

• Sequence of operations

Parallel Computation:

• Directed Acyclic Graph (DAG)

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Parallel Computations

𝑻𝒑: time to perform comp. with 𝑝 procs

• 𝑇1: work (total # operations)

– Time when doing the
computation sequentially

• 𝑇∞: critical path / span

– Time when parallelizing as
much as possible

• Lower Bounds:

𝑻𝒑 ≥
𝑻𝟏
𝒑
, 𝑻𝒑 ≥ 𝑻∞

𝑻𝟏 = 𝟏𝟏

𝑻∞ = 𝟓

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Parallel Computations

𝑻𝒑: time to perform comp. with 𝑝 procs

• Lower Bounds:

𝑇𝑝 ≥
𝑇1
𝑝
, 𝑇𝑝 ≥ 𝑇∞

• Parallelism:
𝑇1

𝑇∞

– maximum possible speed-up

• Linear Speed-up:
𝑇𝑝
𝑇1

= Θ(𝑝)

𝑻𝟏 = 𝟏𝟏

𝑻∞ = 𝟓

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Scheduling

• How to assign operations to processors?

• Generally an online problem
– When scheduling some jobs/operations, we do not know how the

computation evolves over time

Greedy (offline) scheduling:

• Order jobs/operations as they would be scheduled optimally
with ∞ processors (topological sort of DAG)
– Easy to determine: With ∞ processors, one always schedules all

jobs/ops that can be scheduled

• Always schedule as many jobs/ops as possible

• Schedule jobs/ops in the same order as with ∞ processors
– i.e., jobs that become available earlier have priority

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Brent’s Theorem

Brent’s Theorem: On 𝑝 processors, a parallel computation can be
performed in time

𝑻𝒑 ≤
𝑻𝟏 − 𝑻∞

𝒑
+ 𝑻∞.

Proof:

• Greedy scheduling achieves this…

• #operations scheduled with ∞ processors in round 𝑖: 𝒙𝒊

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Brent’s Theorem

Brent’s Theorem: On 𝑝 processors, a parallel computation can be
performed in time

𝑻𝒑 ≤
𝑻𝟏 − 𝑻∞

𝒑
+ 𝑻∞.

Proof:

• Greedy scheduling achieves this…

• #operations scheduled with ∞ processors in round 𝑖: 𝒙𝒊

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Brent’s Theorem

Brent’s Theorem: On 𝑝 processors, a parallel computation can be
performed in time

𝑻𝒑 ≤
𝑻𝟏 − 𝑻∞

𝒑
+ 𝑻∞.

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors 𝑝 = O Τ𝑇1 𝑇∞ , it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

PRAM

Back to the PRAM:

• Shared random access memory, synchronous computation steps

• The PRAM model comes in variants…

EREW (exclusive read, exclusive write):

• Concurrent memory access by multiple processors is not allowed

• If two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

• Reading the same memory cell concurrently is OK

• Two concurrent writes to the same cell lead to unspecified
behavior

• This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

PRAM

The PRAM model comes in variants…

CRCW (concurrent read, concurrent write):

• Concurrent reads and writes are both OK

• Behavior of concurrent writes has to specified
– Weak CRCW: concurrent write only OK if all processors write 0

– Common-mode CRCW: all processors need to write the same value

– Arbitrary-winner CRCW: adversary picks one of the values

– Priority CRCW: value of processor with highest ID is written

– Strong CRCW: largest (or smallest) value is written

• The given models are ordered in strength:

weak ≤ common-mode ≤ arbitrary-winner ≤ priority ≤ strong

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time 𝑡,
using 𝑝 proc. on a strong CRCW machine, can also be performed in
time 𝑂(𝑡 log 𝑝) using 𝑝 processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by
𝑂(log 𝑝) steps on an EREW machine

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time 𝑡,
using 𝑝 proc. on a strong CRCW machine, can also be performed in
time 𝑂(𝑡 log 𝑝) using 𝑝 processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by
𝑂(log 𝑝) steps on an EREW machine

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time 𝑡,
using 𝑝 proc. on a strong CRCW machine, can also be performed in
time 𝑂(𝑡 log 𝑝) using 𝑝 processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by
𝑂(log 𝑝) steps on an EREW machine

Theorem: A parallel computation that can be performed in time 𝑡,
using 𝑝 probabilistic processors on a strong CRCW machine, can also
be performed in expected time 𝑂(𝑡 log 𝑝) using 𝑂(Τ𝑝 log 𝑝)
processors on an arbitrary-winner CRCW machine.

• The same simulation turns out more efficient in this case

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Some Relations Between PRAM Models

Theorem: A computation that can be performed in time 𝑡, using 𝑝
processors on a strong CRCW machine, can also be performed in
time 𝑂(𝑡) using 𝑂 𝑝2 processors on a weak CRCW machine

Proof:

• Strong: largest value wins, weak: only concurrently writing 0 is OK

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Some Relations Between PRAM Models

Theorem: A computation that can be performed in time 𝑡, using 𝑝
processors on a strong CRCW machine, can also be performed in
time 𝑂(𝑡) using 𝑂 𝑝2 processors on a weak CRCW machine

Proof:

• Strong: largest value wins, weak: only concurrently writing 0 is OK

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Computing the Maximum

Given: 𝑛 values

Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a
binary tree.

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Computing the Maximum

Observation: On a strong CRCW machine, the maximum of a 𝑛
values can be computed in 𝑂(1) time using 𝑛 processors

• Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of 𝑛 integers
between 1 and 𝑛 can be computed in time 𝑂 1 using 𝑂 𝑛 proc.

Proof:

• We have 𝑛 memory cells 𝑓1, … , 𝑓 𝑛 for the possible values

• Initialize all 𝑓𝑖 ≔ 1

• For the 𝑛 values 𝑥1, … , 𝑥𝑛, processor 𝑗 sets 𝑓𝑥𝑗 ≔ 0

– Since only zeroes are written, concurrent writes are OK

• Now, 𝑓𝑖 = 0 iff value 𝑖 occurs at least once

• Strong CRCW machine: max. value in time 𝑂(1) w. 𝑂 𝑛 proc.

• Weak CRCW machine: time 𝑂(1) using 𝑂 𝑛 proc. (prev. lemma)

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Computing the Maximum

Theorem: If each value can be represented using 𝑂 log 𝑛 bits, the
maximum of 𝑛 (integer) values can be computed in time 𝑂(1) using
𝑂(𝑛) processors on a weak CRCW machine.

Proof:

• First look at
log2 𝑛

2
highest order bits

• The maximum value also has the maximum among those bits

• There are only 𝑛 possibilities for these bits

• max. of
log2 𝑛

2
highest order bits can be computed in 𝑂 1 time

• For those with largest
log2 𝑛

2
highest order bits, continue with

next block of
log2 𝑛

2
bits, …

