Chapter 10

1
FRE:BURG

UNI

Parallel Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

Cv. Cheed 2
\H«uo(w L;) KM/:EL.g

Sequential Algorithms

UNI
f

FREIBURG

Classical Algorithm Design:
* One machine/CPU/process/... doing a computation

RAM (Random Access Machine):

* Basic standard model

e Unit cost basic operations

* Unit cost access to all memory cells

Sequential Algorithm / Program:

* Sequence of operations
(executed one after the other)

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Parallel and Distributed Algorithms

UNI
f

FREIBURG

Today’s computers/systems are not sequential:

* Even cell phones have several cores

* Future systems will be highly parallel on many levels
* This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:

* Exploit parallelism to speed up computations <——

>+ Shared resources such as memory, bandwidth, ...
* Increase reliability by adding redundancy
—> * Solve tasks in inherently decentralized environments

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI

Parallel and Distributed Systems

FREIBURG

* Many different forms

* Processors/computers/machines/... communicate and share
data through

— Shared memory or message passing

 Computation and communication can be
— Synchronous or asynchronous

* Many possible topologies for message passing

* Depending on system, various types of faults

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Challenges

UNI
FREIBURG

Algorithmic and theoretical challenges:

How to parallelize computations

Scheduling (which machine does what)

Load balancing

Fault tolerance

Coordination / consistency

Decentralized state

Asynchrony

Bounded bandwidth / properties of comm. channels

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Models

UNI
f

FREIBURG

* Alarge variety of models, e.g.:

[- PRAM (Parallel Random Access Machine)
— Classical model for parallel computations
 Shared Memory

— Classical model to study coordination / agreement problems,
distributed data structures, ...

* Message Passing (fully connected topology)

— Closely related to shared memory models

* Message Passing in Networks

— Decentralized computations, large parallel machines, comes in various
flavors...

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

PRAM

UNI
f

FREIBURG

e Parallel version of RAM model

* p processors, shared random access memory
—————

* Basic operations / access to shared memory cost 1
« Processor operations are synchronized iwe s &vided vousds

* Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Other Parallel Models

UNI
f

FREIBURG

* Message passing: Fully connected network, local memory and
information exchange using messages

 Dynamic Multithreaded Algorithms: Simple parallel
programming paradigm
— E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

[FIB(TL) @ | et
i ~

1 if n <2 SNL®
2 then return n | ‘
3 x < spawn FIB (n—1) \\ | N \‘
4 y < spawn FIB(n — 2) “\)
Sogyme ALGORITHMS
6 return (z +y)

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

UNI

Parallel Computations

FREIBURG

Sequential Computation: Parallel Computation:

e Sequence of operations * Directed Acyclic Graph (DAG)

Z

® x

Algorithm Theory, WS 2017/18 Fabian Kuhn

Vo)

FREIBURG

Parallel Computations ¢ # == .

UNI

Qvlggdg Cases g):l . D=0
/

T ,: time to perform comp. with p procs (

e T;:work (total # operations)) T1 =11

e

— Time when doing the
computation sequentially |

e T.: critical path / span
— Time when parallelizing as
much as possible

e Lower Bo_t_mds:

T,

T z\—} T,>T
p p p

\%)\

4

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Parallel Computations

UNI

FREIBURG

T ,: time to perform comp. with p procs

* Lower Bounds:

. T, 1]
 Parallelism: — —
Teo <

— maximum possible speed-up

* Linear Speed-up:

Algorithm Theory, WS 2017/18 Fabian Kuhn

Scheduling

UNI

FREIBURG

 How to assign operations to processors?

* Generally an online problem

— When scheduling some jobs/operations, we do not know how the
computation evolves over time ‘ > v 7
N\ S

V¢
Greedy (offline) scheduling:

* Order jobs/operations as they would be scheduled optimally
with oo processors (topological sort of DAG)

p———

— Easy to determine: With oo processors, one always schedules all
jobs/ops that can be scheduled

* Always schedule as many jobs/ops as possible
* Schedule jobs/ops in the same order as with co processors

— i.e., jobs that become available earlier have priority

-

Algorithm Theory, WS 2017/18 Fabian Kuhn

12

UNI
FREIBURG

Brent’s Theorem T

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
* Greedy scheduling achieves this...

* Hoperations scheduled with oo processors in round i: x;
==

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

UNI
f

FREIBURG

Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
* Greedy scheduling achieves this...

* Hoperations scheduled with oo processors in round i: x;
P prcs. t: Eiwe Yo sduedule x, ovm'\%w

{\'] —*L:ﬁ;\-e-\

_ ® ?
> B “» T T,-T
2 : %2 _2‘;’ -.2‘ h ‘?°° * e
e e T
—- ‘do —_
A = \ (W,
v ¢

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Brent’s Theorem

UNI
f

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.

T* >’T —_G -Tl " d
re - R T i ¥ v
* ', ? r P v f
T X
P P 99..\,(2
= war, f”g@a,(.uf

/

Corollary: As long as the number of processors p = O(T, /Tw), it is
possible to achieve a linear speed-up. —_—

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

P *9
PRAM . T

UNI

FREIBURG

Back to the PRAM:
* Shared random access memory, synchronous computation steps

e The PRAM model comes in variants...

—~» EREW (exclusive read, exclusive write):

e

* Concurrent memory access by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
 Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior @lso concurcent read & wiile wot allowed

* This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

PRAM

UNI
FREIBURG

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified

\ — Weak CRCW: concurrent write only OK if all processors write 0
— Common-mode CRCW: all processors need to write the same value <—

— Arbitrary-winner CRCW: adversary picks one of the values «+—

— Priority CRCW: value of processor with highest ID is written€—

o — Strong CRCW: largest (or smallest) value is written 4__"’

(D, %)

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in timeet,
using p proc. on a strong CRCW machine, can also be performed in
time O(t logp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by

O(logp) steps on an EREW machlne
W\Qwa Q,(l C, ocd: ac'-((.r\’\l(ﬁ(C¢$S<"b CQ((<

councu rm& w—r."(,&

CQ(\ C: auu-(mw' WA, Q(($ G halief ‘}"-L)
\n/ ﬁ/ \m’ \@’ o 4
57 g r
~ —

1)
=

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine
Cou (umay) veadS

?Q/ 7 \\@/ A GS
"\\\ 7

O(/05 6,) ‘m«’(e/ SJ(‘?S

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

_ T
[

Theorem: A parallel computation that can be performed in time t,
using p probabilistic processors on a strong CRCW machine, can also
be performed in expected time O (t 1022) using O (p/logp)

processors on an arbitrary-winner CRCW machine. —
—_——

e The same simulation turns out more efficient in this case

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O(pz) processors on a weak CRCW machine

——

Proof:

* Strong: largest value wins, weak: only concurrently writing 0 is OK
Siuulale (slep of a shous COCO TOMM 5w a wealk CRLW QAN
gc’o@%ors ¢ $J<w5 Qw: |, P
addidiomal et Fis %‘ﬁ avery paif O PARAY {.. ?2 Gey)
add; Kouel Wiewmosw) cells
\&of N1\ ‘(G;(/“'/?S : £|) V; a; (\w'nL?ﬂrn?-eé(f\'ﬂ D)

\ ~ do welk x 4o ey el 2 Gia shom
\((gne. (cfl,...,qﬁ wauls ke x T Coce ?&")

f(: \/ VZ::' X/ a;:: c

—e
\

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A computation that can be performed in time ¢, using p
processors on a strong CRCW machine, can also be performed in

time O(t) using O(pz) processors on a weak CRCW machine
———— —_—————

Proof:

* Strong: largest value wins, weak: only concurrently writing 0 is OK
W(:Wﬁu)‘s bunk xbalc: £, vo=x a-= ¢

Viy o a, weads &6y,)

l(2;:2-7—-) Qu d a;:a)- ‘«‘-QV\ wwj C
\(\/3?/ \ M4-91'4 giFO f;(s \O o
b e 23) ko £,
ellee £): 0 g @> =%, 73=0
3>

qmm L wnis v ell Q. = ,e;:I

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Computing the Maximum

UNI

FREIBURG

Given: n values

—

Goal: jnd the maximum value

—

Observation: The maximum can be computed in parallel by using a

binary tree.
R "R 1 W W)3 o bedouo su an
Y W Y R Tem
\Tﬂ/ \D/ T = o)
lX - o= O fyu)
{ @ T(—‘O(%-} ")

Algorithm Theory, WS 2017/18 Fabian Kuhn

23

Computing the Maximum

UNI
FREIBURG

Observation: On a strong CRCW machine, the maximum of an
values can be computed in 0(1) time using n processors

—_—

e Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers

between 1 and /n can be computed in time 0(1) using O(n) proc.
? —

Proof: il (o]---] el

* We have y/n memory cells fi, ..., f, 5 for the possible values

* Initialize all f; =1
* Forthe n values x4, ..., x,,, processor j sets ij =0

— Since only zeroes are written, concurrent writes are OK

* Now, f; = 0 iff value i occurs at least once
 Strong CRCW machine: max. value in time 0(1) w. 0(1/n) proc.
* Weak CRCW machine: time O(1) using O(n) proc. (prev. lemma)

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Computing the Maximum Y@« == ke =

UNI
FREIBURG

Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using

O(n) processors on a weak CRCW machine. A
I I { | 1

Proof: \)

+ First look at -282" highest order bits

The maximum value also has the maximum among those bits
There are only y/n possibilities for these bits

log, n

max. of highest order bits can be computed in O(1) time

log, n

For those with largest highest order bits, continue with

log, n

next block of bits, ...

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

