Chapter 10
Parallel Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI

FREIBURG

Parallel Computations

UNI

FREIBURG

T ,: time to perform comp. with p procs

* T,:work (total # operations)

— Time when doing the
computation sequentially

e T.: critical path / span

— Time when parallelizing as
much as possible

e Lower Bounds:

Algorithm Theory, WS 2017/18 Fabian Kuhn

Parallel Computations

UNI

FREIBURG

T ,: time to perform comp. with p procs

* Lower Bounds:

. Ty
 Parallelism: —
o0

— maximum possible speed-up

* Linear Speed-up:
T

7. = 0@

Algorithm Theory, WS 2017/18 Fabian Kuhn

Brent’s Theorem

UNI
f

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors p = 0(T, /Tw), it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

PRAM

UNI
f

FREIBURG

Back to the PRAM:
* Shared random access memory, synchronous computation steps
* The PRAM model comes in variants...

EREW (exclusive read, exclusive write):
* Concurrent memory access by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
 Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior

* This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

PRAM

UNI
FREIBURG

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
— Weak CRCW: concurrent write only OK if all processors write 0
— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values
— Priority CRCW: value of processor with highest ID is written
— Strong CRCW: largest (or smallest) value is written

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Prefix Sums

UNI
f

FREIBURG

* The following works for any associative binary operator @:

associativity: (a®b)Dc = aP(bDc)

All-Prefix-Sums: Given a sequence of n values a4, ..., a,,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S1,S2,...,S, = a1, a1Da,,a;Da,Das,...,a;D - Da,

* Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Computing the Sum

UNI
f

FREIBURG

* Let'sfirstlookats,, = a;®Da,d - Da,

* Parallelize using a binary tree:

Algorithm Theory, WS 2017/18 Fabian Kuhn

Computing the Sum

UNI
f

FREIBURG

Lemma: The sum s, = a;Da,® --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O (n).

Proof:

Corollary: The sum s,, can be computed in time O(log n) using
O(n/logn) processors on an EREW PRAM.

Proof:
* Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI

Getting The Prefix Sums

FREIBURG

* Instead of computing the sequence s4, s>, ..., S, let’s compute
71, o,y = 0,81,85, ..., 51 (0: neutral element w.r.t. @)

r, .., =0,a,a1Da,, ..., a;D - Da,,_4

* Together with s,,, this gives all prefix sums
* Prefixsumr; =s;_1 =a,D - Da;_q:

©)
© ©

© ©. (@) ©

@ (& @ (@ @ (@ @ (@
@ @@ @ @ e @ @ we @ 6 e @

ri14

Algorithm Theory, WS 2017/18 Fabian Kuhn (513) 10

Getting The Prefix Sums

UNI
f

FREIBURG

Claim: The prefixsumr; = a,® --- Da;_4 is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing q;
such that v is in the right sub-tree of u.

@
(@) ©. (@) ©.

@ (@ @ (@ @ (@ @ (@
@ @@ @ @ e @ @ ey @ @ e @

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

UNI

Computing The Prefix Sums

FREIBURG

For each node v of the binary tree, define r(v) as follows:

* r(v)isthe sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of u.

For a leaf node v holding value a;: r(v) = r; = s;_4

For the root node: r(root) = 0

For all other nodes v: v is the right child of u:

(u has left child w)
v is the left child of u:
S @/@\@’r(v)zr(u)+5
r(v) =r(u)
(S: sum of values in
sub-tree of w)

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

UNI

Computing The Prefix Sums

FREIBURG

* leaf node v holdingvalue a;: r(v) =r; = s;_4
* root node: r(root) =0

* Node v is the left child of u: r(v) = r(u)
 Node vistherightchildofu:r(v) =r(u) +S

— Where: S = sum of values in left sub-tree of u

Algorithm to compute values r(v):
1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time O(logn) with O(n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time O(logn) with O(n) total work

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Example

UNI
f

FREIBURG

1. Compute sums of all sub-trees
— Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)
— Top-down (starting at the root)

0

0

(19

0 11

(11
990@
0 3 11

@y

0

52)

21

3y

10 2 34

1 (13) 18

10 19 21 30 34 43

10 16 19 21 21 29 30 31 34 38 43 50

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Computing Prefix Sums

UNI
f

FREIBURG

Theorem: Given a sequence a4, ..., a, of n values, all prefix sums
S; = a1 - Da; (for1 < i < n)can be computed intime O(logn)
using O(n/logn) processors on an EREW PRAM.

Proof:

* Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

* The same is true for the top-down step to compute the r(v)

 The theorem then follows from Brent’s theorem:

T
T, = 0(n), T = 0(ogn) = Ty < Te _|_?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Parallel Quicksort

UNI

FREIBURG

* Key challenge: parallelize partition

pivot

51418 8 |19(21| 3 |1 |25/17/11| 4 (20|10(26| 2

13

23

16

partition

5(14/8 | 3|1(11/4 |10/ 2|9 |13/16/18/19|21|25

17

20

26

23

* How can we do this in parallel?
* For now, let’s just care about the values < pivot
 What are their new positions

Algorithm Theory, WS 2017/18 Fabian Kuhn

16

Using Prefix Sums

UNI

FREIBURG

* Goal: Determine positions of values < pivot after partition .

pivot
5(14|18 1921 1(25(17(11| 4 (20/10|26| 2 913231l6/
110 00 1/0/0{1/1/0{1/0/1|1/1/0]|1
@ prefix sums
1|22 3|3 5(5/5/6|7|7/8[8|9|10(11/11|12
@ partition
5 (14| 8 1|11 10/ 2 |19 (13/16|/18|19|21/25(|17/20/26|23

Algorithm Theory, WS 2017/18

Fabian Kuhn

17

UNI

Applying to Quicksort

FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with
high probability), where

nlogn
Tp=0< pg +10g2n).

Proof:

Remark:

 We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Partition Using Prefix Sums

UNI
f

FREIBURG

* The positions of the entries > pivot can be determined in the
same way

* Prefixsums:T; = 0(n), T, = 0(logn)
* Remaining computations: T; = 0(n), T, = 0(1)

 Overall: T, = 0(n), T, = 0(logn)

Lemma: The partitioning of quicksort can be carried out in
parallel in time O(logn) using O (@) processors.
Proof:

By Brent’s theorem: T, < % + T

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Other Applications of Prefix Sums

UNI
f

FREIBURG

* Prefix sums are a very powerful primitive to design parallel
algorithms.
— Particularly also by using other operators than “+”

Example Applications:

* Lexical comparison of strings

* Add multi-precision numbers

e Evaluate polynomials

* Solve recurrences

* Radix sort / quick sort

e Search for regular expressions

* Implement some tree operations

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Prefix Sums in Linked Lists

UNI
f

FREIBURG

Given: Linked list L of length n in the following way

* Elements arein an array A of length n in an unordered way
* Each array element A[i] also contains a next pointer

* Pointer first to the first element of the list

Goal: Compute all prefix sums w.r.t. to the order given by the list

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

UNI

2-Ruling Set of a Linked List

FREIBURG

Given a linked list, select a subset of the entries such that
* No two neighboring entries are selected

* For every entry that is not selected, either the predecessor or
the successor is selected

— i.e., between two consecutive selected entries there are at least one
and at most two unselected entries

* We will see that a 2-ruling set of a linked list can be computed
efficiently in parallel

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Using 2-Ruling Sets to Get Prefix Sums

Observations:

* To compute the prefix sums of an array/list of numbers, we
need a binary tree such that the numbers are at the leaves
and an in-order traversal of the tree gives the right order

* The algorithm can be generalized to non-binary trees

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Using 2-Ruling Sets to Get Prefix Sums

UNI
f

FREIBURG

Basic Idea:

e Use 2-ruling sets to build a tree of logarithmic depth

Algorithm Theory, WS 2017/18

Fabian Kuhn

24

FREIBURG

Using 2-Ruling Sets to Get Prefix Sums ;

UNI

Lemma: If a 2-Ruling Set of a list of length N can be computed in
parallel with w(N) work and d(N) depth, all prefix sums of a list
of length n can be computed in parallel with

* Work O(W(n) +wn/2)+wn/4)+---+ W(l))
* Depth O(d(n) +dn/2)+dn/4) + -+ d(l))
Proof Sketch:

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

FREIBURG

Prefix Sums in Linked Lists

UNI

Log-Star Function:

* Fori = 1: loggi) x = log, (logg_l) x), and loggo) X =X

 Forx > 2:log"x = min{i : log® x < 2}, forx < 2:log"x =1

Lemma: A 2-ruling set of a linked list of length n can be computed in
parallel with work O(n - log* n) and span O(log* n).

* i.e., intime O(log* n) using O(n) processors
— We will first see how to apply this and prove it afterwards...

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

Prefix Sums in Linked Lists

UNI
f

FREIBURG

Lemma: A 2-ruling set of a linked list of length n can be computed in
parallel with work O(n - log* n) and span O(log* n).

Theorem: All prefix sums of a linked list of length n can be
computed in parallel with total work O(n - log® n) and span

O(logn -log* n).
* i.e. intime O(logn -log*n) using O(n/logn) processors.

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Computing 2-Ruling Sets

UNI
FREIBURG

* Instead of computing a 2-ruling set, we first compute a coloring
of the list:

— each list element gets a color s.t. adjacent elements get different colors

* Each element initially has a unique log n-bit label in {1, ..., N}
— can be interpreted as an initial coloring with N colors

Algorithm runs in phases:
* Each phase: compute new coloring with smaller number of colors

We will show that

« #phases to getto O(1) colorsis O(log* n)
 each phase has O(n) work and 0(1) depth

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Reducing the number of colors

UNI

FREIBURG

Assume that we start with a coloring with colors {0, ..., x — 1}

Algorithm Theory, WS 2017/18 Fabian Kuhn

29

Reducing the number of colors

UNI

FREIBURG

Assume that we start with a coloring with colors {0, ..., x — 1}

Algorithm Theory, WS 2017/18 Fabian Kuhn

30

Reducing the number of colors

UNI

FREIBURG

Assume that we start with a coloring with colors {0, ..., x — 1}

Algorithm Theory, WS 2017/18 Fabian Kuhn

31

