

Chapter 10 Parallel Algorithms

Algorithm Theory WS 2017/18

Fabian Kuhn

Parallel Computations

FREIBURG

 T_p : time to perform comp. with p procs

- *T*₁: **work** (total # operations)
 - Time when doing the computation sequentially
- T_∞ : critical path / span
 - Time when parallelizing as much as possible
- Lower Bounds:

$$T_p \geq \frac{T_1}{p}, \qquad T_p \geq T_\infty$$

Parallel Computations

FREIBURG

 T_p : time to perform comp. with p procs

• Lower Bounds:

$$T_p \ge \frac{T_1}{p}, \qquad T_p \ge T_\infty$$

- Parallelism: $\frac{T_1}{T_{\infty}}$
 - maximum possible speed-up
- Linear Speed-up: $\frac{T_p}{T_1} = \Theta(p)$

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_{\infty}}{p} + T_{\infty}.$$

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors $p = O(T_1/T_{\infty})$, it is possible to achieve a linear speed-up.

Algorithm Theory, WS 2017/18

Fabian Kuhn

PRAM

Back to the PRAM:

- Shared random access memory, synchronous computation steps
- The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

- Concurrent memory access by multiple processors is not allowed
- If two or more processors try to read from or write to the same memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

- Reading the same memory cell concurrently is OK
- Two concurrent writes to the same cell lead to unspecified behavior
- This is the first variant that was considered (already in the 70s)

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):

- Concurrent reads and writes are both OK
- Behavior of concurrent writes has to specified
 - Weak CRCW: concurrent write only OK if all processors write 0
 - Common-mode CRCW: all processors need to write the same value
 - Arbitrary-winner CRCW: adversary picks one of the values
 - Priority CRCW: value of processor with highest ID is written
 - Strong CRCW: largest (or smallest) value is written
- The given models are ordered in strength:

weak \leq common-mode \leq arbitrary-winner \leq priority \leq strong

Prefix Sums

The following works for any associative binary operator ⊕:
associativity: (a⊕b)⊕c = a⊕(b⊕c)

All-Prefix-Sums: Given a sequence of n values a_1, \ldots, a_n , the all-prefix-sums operation w.r.t. \bigoplus returns the sequence of prefix sums:

 $s_1, s_2, \dots, s_n = a_1, a_1 \oplus a_2, a_1 \oplus a_2 \oplus a_3, \dots, a_1 \oplus \dots \oplus a_n$

• Can be computed efficiently in parallel and turns out to be an important building block for designing parallel algorithms

Example: Operator: +, input: $a_1, \dots, a_8 = 3, 1, 7, 0, 4, 1, 6, 3$

 $s_1, \dots, s_8 =$

Fabian Kuhn

Computing the Sum

- Let's first look at $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$
- Parallelize using a binary tree:

Computing the Sum

Lemma: The sum $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$ can be computed in time $O(\log n)$ on an EREW PRAM. The total number of operations (total work) is O(n).

Proof:

Corollary: The sum s_n can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM. **Proof:**

• Follows from Brent's theorem $(T_1 = O(n), T_{\infty} = O(\log n))$

Getting The Prefix Sums

- Instead of computing the sequence s_1, s_2, \dots, s_n let's compute $r_1, \dots, r_n = 0, s_1, s_2, \dots, s_{n-1}$ (0: neutral element w.r.t. \bigoplus) $r_1, \dots, r_n = 0, a_1, a_1 \oplus a_2, \dots, a_1 \oplus \dots \oplus a_{n-1}$
- Together with s_n , this gives all prefix sums
- Prefix sum $r_i = s_{i-1} = a_1 \oplus \cdots \oplus a_{i-1}$:

Getting The Prefix Sums

Claim: The prefix sum $r_i = a_1 \oplus \cdots \oplus a_{i-1}$ is the sum of all the leaves in the left sub-tree of ancestor u of the leaf v containing a_i such that v is in the right sub-tree of u.

Computing The Prefix Sums

UNI

For each node v of the binary tree, define r(v) as follows:

 r(v) is the sum of the values a_i at the leaves in all the left subtrees of ancestors u of v such that v is in the right sub-tree of u.

For a leaf node v holding value $a_i: r(v) = r_i = s_{i-1}$

For the root node: r(root) = 0

For all other nodes v:

v is the left child of u: v r(v) = r(u) *v* is the right child of *u*: (*u* has left child *w*) *v* r(v) = r(u) + S(*S*: sum of values in sub-tree of *w*)

Computing The Prefix Sums

FREIBURG

- leaf node v holding value $a_i: \mathbf{r}(v) = \mathbf{r}_i = \mathbf{s}_{i-1}$
- root node: r(root) = 0
- Node v is the left child of u: r(v) = r(u)
- Node v is the right child of u: r(v) = r(u) + S
 - Where: S =sum of values in left sub-tree of u

Algorithm to compute values r(v):

- 1. Compute sum of values in each sub-tree (bottom-up)
 - Can be done in parallel time $O(\log n)$ with O(n) total work
- 2. Compute values r(v) top-down from root to leaves:
 - To compute the value r(v), only r(u) of the parent u and the sum of the left sibling (if v is a right child) are needed
 - Can be done in parallel time $O(\log n)$ with O(n) total work

Example

- 1. Compute sums of all sub-trees
 - Bottom-up (level-wise in parallel, starting at the leaves)
- 2. Compute values r(v)
 - Top-down (starting at the root)

UNI FREIBURG

Theorem: Given a sequence $a_1, ..., a_n$ of n values, all prefix sums $s_i = a_1 \oplus \cdots \oplus a_i$ (for $1 \le i \le n$) can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM.

Proof:

- Computing the sums of all sub-trees can be done in parallel in time O(log n) using O(n) total operations.
- The same is true for the top-down step to compute the r(v)
- The theorem then follows from Brent's theorem:

$$T_1 = O(n), \qquad T_\infty = O(\log n) \implies T_p < T_\infty + \frac{T_1}{p}$$

Remark: This can be adapted to other parallel models and to different ways of storing the value (e.g., array or list)

Fabian Kuhn

Parallel Quicksort

- How can we do this in parallel?
- For now, let's just care about the values \leq pivot
- What are their new positions

Using Prefix Sums

Applying to Quicksort

Theorem: On an EREW PRAM, using p processors, randomized quicksort can be executed in time T_p (in expectation and with high probability), where

$$T_p = O\left(\frac{n\log n}{p} + \log^2 n\right).$$

Proof:

Remark:

• We get optimal (linear) speed-up w.r.t. to the sequential algorithm for all $p = O(n/\log n)$.

Algorithm Theory, WS 2017/18

Fabian Kuhn

Partition Using Prefix Sums

- The positions of the entries > pivot can be determined in the same way
- Prefix sums: $T_1 = O(n)$, $T_{\infty} = O(\log n)$
- Remaining computations: $T_1 = O(n)$, $T_{\infty} = O(1)$
- Overall: $T_1 = O(n)$, $T_{\infty} = O(\log n)$

Lemma: The partitioning of quicksort can be carried out in parallel in time $O(\log n)$ using $O\left(\frac{n}{\log n}\right)$ processors.

Proof:

• By Brent's theorem: $T_p \leq \frac{T_1}{p} + T_{\infty}$

Algorithm Theory, WS 2017/18

Other Applications of Prefix Sums

- Prefix sums are a very powerful primitive to design parallel algorithms.
 - Particularly also by using other operators than "+"

Example Applications:

- Lexical comparison of strings
- Add multi-precision numbers
- Evaluate polynomials
- Solve recurrences
- Radix sort / quick sort
- Search for regular expressions
- Implement some tree operations

Prefix Sums in Linked Lists

Given: Linked list *L* of length *n* in the following way

- Elements are in an array A of length n in an unordered way
- Each array element A[i] also contains a next pointer
- Pointer *first* to the first element of the list

Goal: Compute all prefix sums w.r.t. to the order given by the list

2-Ruling Set of a Linked List

Given a linked list, select a subset of the entries such that

- No two neighboring entries are selected
- For every entry that is not selected, either the predecessor or the successor is selected
 - i.e., between two consecutive selected entries there are at least one and at most two unselected entries

• We will see that a 2-ruling set of a linked list can be computed efficiently in parallel

Observations:

- To compute the prefix sums of an array/list of numbers, we need a binary tree such that the numbers are at the leaves and an in-order traversal of the tree gives the right order
- The algorithm can be generalized to non-binary trees

Using 2-Ruling Sets to Get Prefix Sums

Basic Idea:

• Use 2-ruling sets to build a tree of logarithmic depth

Using 2-Ruling Sets to Get Prefix Sums

Lemma: If a 2-Ruling Set of a list of length N can be computed in parallel with w(N) work and d(N) depth, all prefix sums of a list of length n can be computed in parallel with

- Work $O(w(n) + w(n/2) + w(n/4) + \dots + w(1))$
- Depth $O(d(n) + d(n/2) + d(n/4) + \dots + d(1))$

Proof Sketch:

Log-Star Function:

- For $i \ge 1: \log_2^{(i)} x = \log_2\left(\log_2^{(i-1)} x\right)$, and $\log_2^{(0)} x = x$
- For x > 2: $\log^* x \coloneqq \min\{i : \log^{(i)} x \le 2\}$, for $x \le 2$: $\log^* x \coloneqq 1$

Lemma: A 2-ruling set of a linked list of length n can be computed in parallel with work $O(n \cdot \log^* n)$ and span $O(\log^* n)$.

- i.e., in time $O(\log^* n)$ using O(n) processors
 - We will first see how to apply this and prove it afterwards...

Prefix Sums in Linked Lists

Lemma: A 2-ruling set of a linked list of length n can be computed in parallel with work $O(n \cdot \log^* n)$ and span $O(\log^* n)$.

Theorem: All prefix sums of a linked list of length n can be computed in parallel with total work $O(n \cdot \log^* n)$ and span $O(\log n \cdot \log^* n)$.

• i.e., in time $O(\log n \cdot \log^* n)$ using $O(n/\log n)$ processors.

Computing 2-Ruling Sets

- Instead of computing a 2-ruling set, we first compute a coloring of the list:
 - each list element gets a color s.t. adjacent elements get different colors
- Each element initially has a unique $\log n$ -bit label in $\{1, ..., N\}$
 - can be interpreted as an initial coloring with N colors

Algorithm runs in phases:

• Each phase: compute new coloring with smaller number of colors

We will show that

- #phases to get to O(1) colors is $O(\log^* n)$
- each phase has O(n) work and O(1) depth

Algorithm Theory, WS 2017/18

Fabian Kuhn

Reducing the number of colors

Assume that we start with a coloring with colors $\{0, ..., x - 1\}$

Reducing the number of colors

Assume that we start with a coloring with colors $\{0, ..., x - 1\}$

Reducing the number of colors

Assume that we start with a coloring with colors $\{0, ..., x - 1\}$