
Chapter 10

Parallel Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Parallel Computations

𝑻𝒑: time to perform comp. with 𝑝 procs

• 𝑇1: work (total # operations)

– Time when doing the
computation sequentially

• 𝑇∞: critical path / span

– Time when parallelizing as
much as possible

• Lower Bounds:

𝑻𝒑 ≥
𝑻𝟏
𝒑
, 𝑻𝒑 ≥ 𝑻∞

𝑻𝟏 = 𝟏𝟏

𝑻∞ = 𝟓

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Parallel Computations

𝑻𝒑: time to perform comp. with 𝑝 procs

• Lower Bounds:

𝑇𝑝 ≥
𝑇1
𝑝
, 𝑇𝑝 ≥ 𝑇∞

• Parallelism:
𝑇1

𝑇∞

– maximum possible speed-up

• Linear Speed-up:
𝑇𝑝
𝑇1

= Θ(𝑝)

𝑻𝟏 = 𝟏𝟏

𝑻∞ = 𝟓

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Brent’s Theorem

Brent’s Theorem: On 𝑝 processors, a parallel computation can be
performed in time

𝑻𝒑 ≤
𝑻𝟏 − 𝑻∞

𝒑
+ 𝑻∞.

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors 𝑝 = O Τ𝑇1 𝑇∞ , it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

PRAM

Back to the PRAM:

• Shared random access memory, synchronous computation steps

• The PRAM model comes in variants…

EREW (exclusive read, exclusive write):

• Concurrent memory access by multiple processors is not allowed

• If two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

• Reading the same memory cell concurrently is OK

• Two concurrent writes to the same cell lead to unspecified
behavior

• This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

PRAM

The PRAM model comes in variants…

CRCW (concurrent read, concurrent write):

• Concurrent reads and writes are both OK

• Behavior of concurrent writes has to specified
– Weak CRCW: concurrent write only OK if all processors write 0

– Common-mode CRCW: all processors need to write the same value

– Arbitrary-winner CRCW: adversary picks one of the values

– Priority CRCW: value of processor with highest ID is written

– Strong CRCW: largest (or smallest) value is written

• The given models are ordered in strength:

weak ≤ common-mode ≤ arbitrary-winner ≤ priority ≤ strong

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Prefix Sums

• The following works for any associative binary operator ⨁:

associativity: 𝑎⨁𝑏 ⨁𝑐 = 𝑎⨁ 𝑏⨁𝑐

All-Prefix-Sums: Given a sequence of 𝑛 values 𝑎1, … , 𝑎𝑛, the all-
prefix-sums operation w.r.t. ⨁ returns the sequence of prefix sums:

𝑠1, 𝑠2, … , 𝑠𝑛 = 𝑎1, 𝑎1⨁𝑎2, 𝑎1⨁𝑎2⨁𝑎3, … , 𝑎1⨁⋯⨁𝑎𝑛

• Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: 𝑎1, … , 𝑎8 = 3, 1, 7, 0, 4, 1, 6, 3

𝑠1, … , 𝑠8 =

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Computing the Sum

• Let’s first look at 𝑠𝑛 = 𝑎1⨁𝑎2⨁⋯⨁𝑎𝑛

• Parallelize using a binary tree:

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Computing the Sum

Lemma: The sum 𝑠𝑛 = 𝑎1⨁𝑎2⨁⋯⨁𝑎𝑛 can be computed in
time 𝑂(log 𝑛) on an EREW PRAM. The total number of
operations (total work) is 𝑂(𝑛).

Proof:

Corollary: The sum 𝑠𝑛 can be computed in time 𝑂 log 𝑛 using
𝑂 Τ𝑛 log 𝑛 processors on an EREW PRAM.

Proof:

• Follows from Brent’s theorem (𝑇1 = 𝑂(𝑛), 𝑇∞ = 𝑂(log 𝑛))

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Getting The Prefix Sums

• Instead of computing the sequence 𝑠1, 𝑠2, … , 𝑠𝑛 let’s compute
𝑟1, … , 𝑟𝑛 = 0, 𝑠1, 𝑠2, … , 𝑠𝑛−1 (0: neutral element w.r.t. ⨁)

𝑟1, … , 𝑟𝑛 = 0, 𝑎1, 𝑎1⨁𝑎2, … , 𝑎1⨁⋯⨁𝑎𝑛−1

• Together with 𝑠𝑛, this gives all prefix sums

• Prefix sum 𝑟𝑖 = 𝑠𝑖−1 = 𝑎1⨁⋯⨁𝑎𝑖−1:

⨁

⨁ ⨁

⨁ ⨁ ⨁ ⨁

⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁

𝒂𝟐 𝒂𝟑𝒂𝟏 𝒂𝟒 𝒂𝟓 𝒂𝟔 𝒂𝟕 𝒂𝟖 𝒂𝟗 𝒂𝟏𝟎 𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟏𝟒 𝒂𝟏𝟓 𝒂𝟏𝟔

𝒓𝟏𝟒
(𝒔𝟏𝟑)

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Getting The Prefix Sums

Claim: The prefix sum 𝑟𝑖 = 𝑎1⨁⋯⨁𝑎𝑖−1 is the sum of all the
leaves in the left sub-tree of ancestor 𝑢 of the leaf 𝑣 containing 𝑎𝑖
such that 𝑣 is in the right sub-tree of 𝑢.

⨁

⨁ ⨁

⨁ ⨁ ⨁ ⨁

⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁

𝒂𝟐 𝒂𝟑𝒂𝟏 𝒂𝟒 𝒂𝟓 𝒂𝟔 𝒂𝟕 𝒂𝟖 𝒂𝟗 𝒂𝟏𝟎 𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟏𝟒 𝒂𝟏𝟓 𝒂𝟏𝟔

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Computing The Prefix Sums

For each node 𝒗 of the binary tree, define 𝒓(𝒗) as follows:

• 𝑟 𝑣 is the sum of the values 𝑎𝑖 at the leaves in all the left sub-
trees of ancestors 𝑢 of 𝑣 such that 𝑣 is in the right sub-tree of 𝑢.

For a leaf node 𝑣 holding value 𝑎𝑖: 𝒓 𝒗 = 𝒓𝒊 = 𝒔𝒊−𝟏

For the root node: 𝒓 𝐫𝐨𝐨𝐭 = 𝟎

For all other nodes 𝑣:

𝑣 is the left child of 𝑢:

𝑟 𝑣 = 𝑟(𝑢)

𝒖

𝒗

𝑣 is the right child of 𝑢:
(𝑢 has left child 𝑤)

𝑟 𝑣 = 𝑟 𝑢 + 𝑆

(𝑆: sum of values in
sub-tree of 𝑤)

𝒖

𝒘 𝒗

𝑺

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Computing The Prefix Sums

• leaf node 𝑣 holding value 𝑎𝑖: 𝒓 𝒗 = 𝒓𝒊 = 𝒔𝒊−𝟏
• root node: 𝒓 𝐫𝐨𝐨𝐭 = 𝟎

• Node 𝑣 is the left child of 𝑢: 𝑟 𝑣 = 𝑟(𝑢)

• Node 𝑣 is the right child of 𝑢: 𝑟 𝑣 = 𝑟 𝑢 + 𝑆
– Where: 𝑆 = sum of values in left sub-tree of 𝑢

Algorithm to compute values 𝒓(𝒗):

1. Compute sum of values in each sub-tree (bottom-up)
– Can be done in parallel time 𝑂 log 𝑛 with 𝑂(𝑛) total work

2. Compute values 𝑟(𝑣) top-down from root to leaves:
– To compute the value 𝑟(𝑣), only 𝑟(𝑢) of the parent 𝑢 and the sum of the

left sibling (if 𝑣 is a right child) are needed

– Can be done in parallel time 𝑂 log 𝑛 with 𝑂 𝑛 total work

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Example

1. Compute sums of all sub-trees
– Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values 𝑟(𝑣)
– Top-down (starting at the root)

𝟖 𝟎𝟑 −𝟏 𝟔 𝟑 𝟐 𝟎 𝟖 𝟏 𝟏 𝟑 𝟒 𝟓 𝟕 𝟐

𝟏𝟏 −𝟏 𝟗 𝟗𝟐 𝟒 𝟗 𝟗

𝟏𝟎 𝟏𝟏 𝟏𝟑 𝟏𝟖

𝟐𝟏 𝟑𝟏

𝟓𝟐
𝟎

𝟎 𝟐𝟏

𝟎

𝟎

𝟎 𝟑 𝟏𝟏

𝟏𝟏

𝟏𝟏

𝟏𝟎

𝟏𝟎

𝟏𝟎 𝟏𝟔

𝟏𝟗

𝟏𝟗 𝟐𝟏

𝟐𝟏

𝟐𝟏

𝟐𝟏 𝟐𝟗 𝟑𝟎

𝟑𝟎

𝟑𝟏

𝟑𝟒

𝟑𝟒

𝟑𝟒 𝟑𝟖 𝟒𝟑

𝟒𝟑

𝟓𝟎

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Computing Prefix Sums

Theorem: Given a sequence 𝑎1, … , 𝑎𝑛 of 𝑛 values, all prefix sums
𝑠𝑖 = 𝑎1⨁⋯⨁𝑎𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) can be computed in time 𝑂(log 𝑛)
using 𝑂 Τ𝑛 log 𝑛 processors on an EREW PRAM.

Proof:

• Computing the sums of all sub-trees can be done in parallel in
time 𝑂 log 𝑛 using 𝑂 𝑛 total operations.

• The same is true for the top-down step to compute the 𝑟(𝑣)

• The theorem then follows from Brent’s theorem:

𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂 log 𝑛 ⟹ 𝑇𝑝 < 𝑇∞ +
𝑇1
𝑝

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

Parallel Quicksort

• Key challenge: parallelize partition

• How can we do this in parallel?

• For now, let’s just care about the values ≤ pivot

• What are their new positions

𝟓 𝟏𝟒 𝟏𝟖 𝟖 𝟏𝟗 𝟐𝟏 𝟑 𝟏 𝟐𝟓 𝟏𝟕 𝟏𝟏 𝟒 𝟐𝟎 𝟏𝟎 𝟐𝟔 𝟐 𝟗 𝟏𝟑 𝟐𝟑 𝟏𝟔

pivot

𝟓 𝟏𝟒 𝟖 𝟑 𝟏 𝟏𝟏 𝟒 𝟏𝟎 𝟐 𝟗 𝟏𝟑 𝟏𝟔 𝟏𝟖 𝟏𝟗 𝟐𝟏 𝟐𝟓 𝟏𝟕 𝟐𝟎 𝟐𝟔 𝟐𝟑

partition

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Using Prefix Sums

• Goal: Determine positions of values ≤ pivot after partition

𝟓 𝟏𝟒 𝟏𝟖 𝟖 𝟏𝟗 𝟐𝟏 𝟑 𝟏 𝟐𝟓 𝟏𝟕 𝟏𝟏 𝟒 𝟐𝟎 𝟏𝟎 𝟐𝟔 𝟐 𝟗 𝟏𝟑 𝟐𝟑 𝟏𝟔

pivot

𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟏 𝟏 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟏

𝟏 𝟐 𝟐 𝟑 𝟑 𝟑 𝟒 𝟓 𝟓 𝟓 𝟔 𝟕 𝟕 𝟖 𝟖 𝟗 𝟏𝟎 𝟏𝟏 𝟏𝟏 𝟏𝟐

𝟓 𝟏𝟒 𝟖 𝟑 𝟏 𝟏𝟏 𝟒 𝟏𝟎 𝟐 𝟗 𝟏𝟑 𝟏𝟔 𝟏𝟖 𝟏𝟗 𝟐𝟏 𝟐𝟓 𝟏𝟕 𝟐𝟎 𝟐𝟔 𝟐𝟑

prefix sums

partition

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Applying to Quicksort

Theorem: On an EREW PRAM, using 𝑝 processors, randomized
quicksort can be executed in time 𝑇𝑝 (in expectation and with

high probability), where

𝑇𝑝 = 𝑂
𝑛 log 𝑛

𝑝
+ log2 𝑛 .

Proof:

Remark:

• We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all 𝑝 = 𝑂 Τ𝑛 log 𝑛 .

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Partition Using Prefix Sums

• The positions of the entries > pivot can be determined in the
same way

• Prefix sums: 𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂(log 𝑛)

• Remaining computations: 𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂(1)

• Overall: 𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂(log 𝑛)

Lemma: The partitioning of quicksort can be carried out in

parallel in time 𝑂 log 𝑛 using 𝑂
𝑛

log 𝑛
processors.

Proof:

• By Brent’s theorem: 𝑇𝑝 ≤
𝑇1

𝑝
+ 𝑇∞

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Other Applications of Prefix Sums

• Prefix sums are a very powerful primitive to design parallel
algorithms.
– Particularly also by using other operators than “+”

Example Applications:

• Lexical comparison of strings

• Add multi-precision numbers

• Evaluate polynomials

• Solve recurrences

• Radix sort / quick sort

• Search for regular expressions

• Implement some tree operations

• …

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Prefix Sums in Linked Lists

Given: Linked list 𝐿 of length 𝑛 in the following way

• Elements are in an array 𝐴 of length 𝑛 in an unordered way

• Each array element 𝐴 𝑖 also contains a next pointer

• Pointer 𝑓𝑖𝑟𝑠𝑡 to the first element of the list

Goal: Compute all prefix sums w.r.t. to the order given by the list

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

2-Ruling Set of a Linked List

Given a linked list, select a subset of the entries such that

• No two neighboring entries are selected

• For every entry that is not selected, either the predecessor or
the successor is selected
– i.e., between two consecutive selected entries there are at least one

and at most two unselected entries

• We will see that a 2-ruling set of a linked list can be computed
efficiently in parallel

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Using 2-Ruling Sets to Get Prefix Sums

Observations:

• To compute the prefix sums of an array/list of numbers, we
need a binary tree such that the numbers are at the leaves
and an in-order traversal of the tree gives the right order

• The algorithm can be generalized to non-binary trees

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Using 2-Ruling Sets to Get Prefix Sums

Basic Idea:

• Use 2-ruling sets to build a tree of logarithmic depth

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Using 2-Ruling Sets to Get Prefix Sums

Lemma: If a 2-Ruling Set of a list of length 𝑁 can be computed in
parallel with 𝑤 𝑁 work and 𝑑 𝑁 depth, all prefix sums of a list
of length 𝑛 can be computed in parallel with

• Work 𝑂 𝑤 𝑛 + 𝑤 Τ𝑛 2 + 𝑤 Τ𝑛 4 +⋯+ 𝑤 1

• Depth 𝑂 𝑑 𝑛 + 𝑑 Τ𝑛 2 + 𝑑 Τ𝑛 4 +⋯+ 𝑑 1

Proof Sketch:

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

Prefix Sums in Linked Lists

Log-Star Function:

• For 𝑖 ≥ 1: log2
(𝑖)
𝑥 = log2 log2

𝑖−1
𝑥 , and log2

0
𝑥 = 𝑥

• For 𝑥 > 2: log∗ 𝑥 ≔ min 𝑖 ∶ log(𝑖) 𝑥 ≤ 2 , for 𝑥 ≤ 2: log∗ 𝑥 ≔ 1

Lemma: A 2-ruling set of a linked list of length 𝑛 can be computed in
parallel with work 𝑂 𝑛 ⋅ log∗ 𝑛 and span 𝑂 log∗ 𝑛 .

• i.e., in time 𝑂 log∗ 𝑛 using 𝑂(𝑛) processors
– We will first see how to apply this and prove it afterwards…

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Prefix Sums in Linked Lists

Lemma: A 2-ruling set of a linked list of length 𝑛 can be computed in
parallel with work 𝑂 𝑛 ⋅ log∗ 𝑛 and span 𝑂 log∗ 𝑛 .

Theorem: All prefix sums of a linked list of length 𝑛 can be
computed in parallel with total work 𝑂 𝑛 ⋅ log∗ 𝑛 and span
𝑂 log 𝑛 ⋅ log∗ 𝑛 .

• i.e., in time 𝑂 log 𝑛 ⋅ log∗ 𝑛 using 𝑂 Τ𝑛 log 𝑛 processors.

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Computing 2-Ruling Sets

• Instead of computing a 2-ruling set, we first compute a coloring
of the list:
– each list element gets a color s.t. adjacent elements get different colors

• Each element initially has a unique log 𝑛-bit label in 1,… ,𝑁
– can be interpreted as an initial coloring with 𝑁 colors

Algorithm runs in phases:

• Each phase: compute new coloring with smaller number of colors

We will show that

• #phases to get to 𝑂 1 colors is 𝑂 log∗ 𝑛

• each phase has 𝑂(𝑛) work and 𝑂 1 depth

Algorithm Theory, WS 2017/18 Fabian Kuhn 29

Reducing the number of colors

Assume that we start with a coloring with colors 0,… , 𝑥 − 1

Algorithm Theory, WS 2017/18 Fabian Kuhn 30

Reducing the number of colors

Assume that we start with a coloring with colors 0,… , 𝑥 − 1

Algorithm Theory, WS 2017/18 Fabian Kuhn 31

Reducing the number of colors

Assume that we start with a coloring with colors 0,… , 𝑥 − 1

