

Chapter 10 Parallel Algorithms

Algorithm Theory WS 2017/18

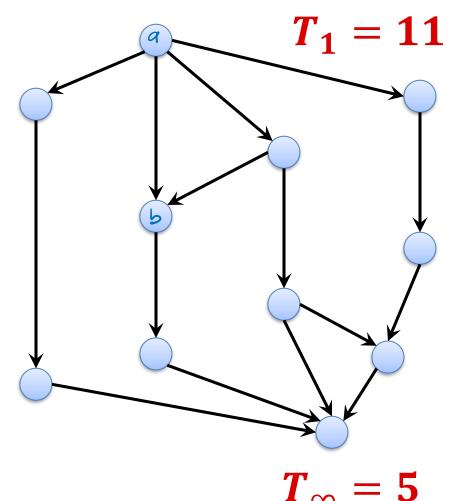
Fabian Kuhn

Parallel Computations

T_p : time to perform comp. with p procs

- T_1 : work (total # operations)
 - Time when doing the computation sequentially
 depth
- T_{∞} : critical path / span
 - Time when parallelizing as much as possible
- Lower Bounds:

$$T_p \geq \frac{T_1}{p}, \qquad T_p \geq T_{\infty}$$



Parallel Computations

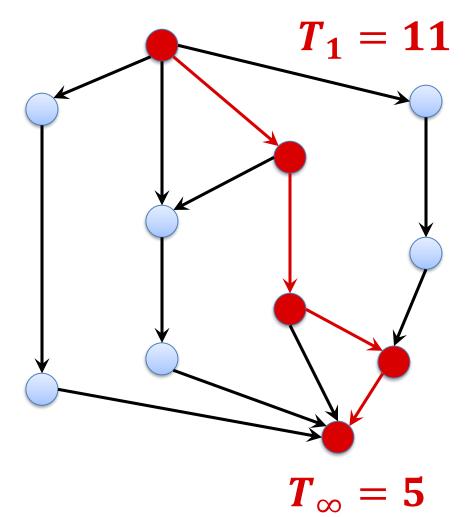
 T_p : time to perform comp. with p procs

Lower Bounds:

$$T_p \ge \frac{T_1}{p}, \qquad T_p \ge T_\infty$$

- Parallelism: $\frac{T_1}{T_{\infty}}$
 - maximum possible speed-up
- Linear Speed-up:

$$\frac{T_p}{T_1} = \Theta(p)$$



Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.$$

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors $p = O(T_1/T_{\infty})$, it is possible to achieve a linear speed-up.

PRAM

Back to the PRAM:

- Shared random access memory, synchronous computation steps
- The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

- Concurrent memory access by multiple processors is not allowed
- If two or more processors try to read from or write to the same memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

- Reading the same memory cell concurrently is OK
- Two concurrent writes to the same cell lead to unspecified behavior
- This is the first variant that was considered (already in the 70s)

PRAM

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):

- Concurrent reads and writes are both OK
- Behavior of concurrent writes has to specified
 - ★ Weak CRCW: concurrent write only OK if all processors write 0
 - Common-mode CRCW: all processors need to write the same value
 - Arbitrary-winner CRCW: adversary picks one of the values
 - Priority CRCW: value of processor with highest ID is written
 - ✓ Strong CRCW: largest (or smallest) value is written
- The given models are ordered in strength:

weak \leq common-mode \leq arbitrary-winner \leq priority \leq strong

Prefix Sums

• The following works for any associative binary operator \oplus :

associativity:
$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

All-Prefix-Sums: Given a sequence of n values $a_1, ..., a_n$, the all-prefix-sums operation w.r.t. \oplus returns the sequence of prefix sums:

$$\underline{s_1}, \underline{s_2}, \dots, \underline{s_n} = \underline{a_1}, \underline{a_1} \oplus \underline{a_2}, \underline{a_1} \oplus \underline{a_2} \oplus \underline{a_3}, \dots, \underline{a_1} \oplus \dots \oplus \underline{a_n}$$

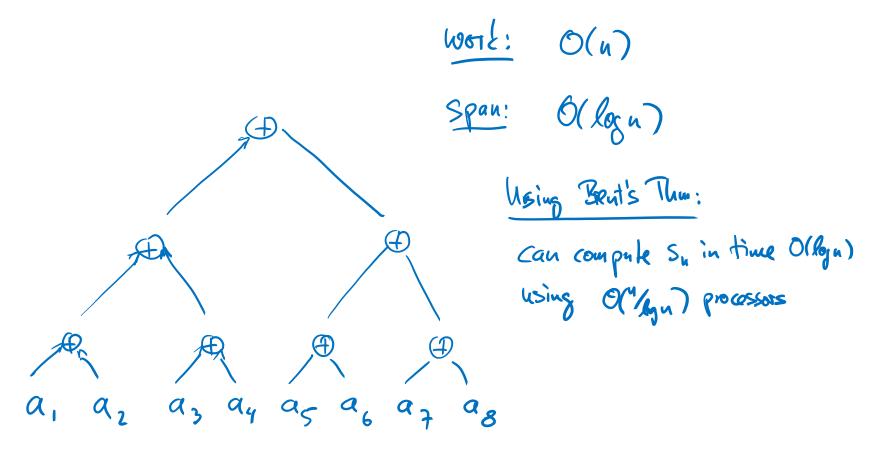
 Can be computed efficiently in parallel and turns out to be an important building block for designing parallel algorithms

Example: Operator: +, input: $a_1, ..., a_8 = 3, 1, 7, 0, 4, 1, 6, 3$

$$s_1, ..., s_8 = 3, 4, 11, 11, 15, 16, 22, 25$$

Computing the Sum

- Let's first look at $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$
- Parallelize using a binary tree:



Computing the Sum

Lemma: The sum $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$ can be computed in time $O(\log n)$ on an EREW PRAM. The total number of operations (total work) is O(n).

Proof:

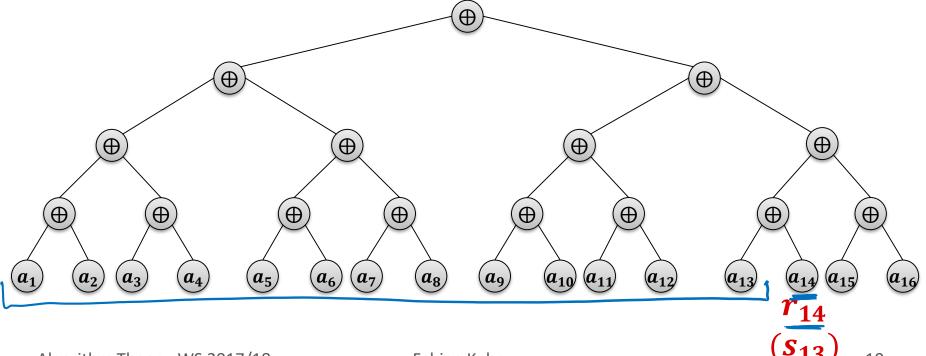
Corollary: The sum s_n can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM.

Proof:

• Follows from Brent's theorem $(T_1 = O(n), T_{\infty} = O(\log n))$

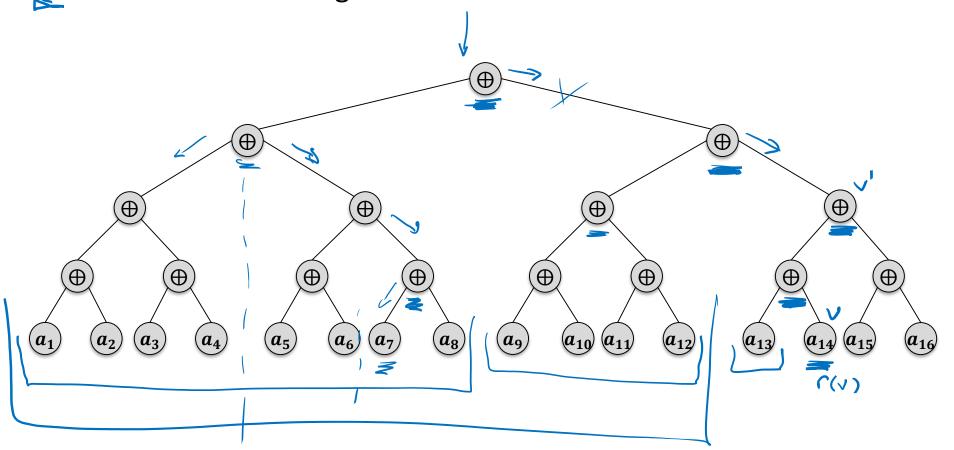
Getting The Prefix Sums 5, 5, 5,

- Instead of computing the sequence $s_1, s_2, ..., s_n$ let's compute $r_1, ..., r_n = 0, s_1, s_2, ..., s_{n-1}$ (0: neutral element w.r.t. \oplus) $r_1, \dots, r_n = 0, a_1, a_1 \oplus a_2, \dots, a_1 \oplus \dots \oplus a_{n-1}$
- Together with s_n , this gives all prefix sums
- Prefix sum $r_i = s_{i-1} = a_1 \oplus \cdots \oplus a_{i-1}$:



Getting The Prefix Sums

Claim: The prefix sum $\underline{r_i} = a_1 \oplus \cdots \oplus a_{i-1}$ is the sum of all the leaves in the left sub-tree of ancestor u of the leaf v containing a_i such that v is in the right sub-tree of u.



Computing The Prefix Sums

For each node v of the binary tree, define r(v) as follows:

• r(v) is the sum of the values a_i at the leaves in all the left subtrees of ancestors u of v such that v is in the right sub-tree of u.

For a leaf node v holding value $\underline{a_i}$: $\underline{r(v)} = \underline{r_i} = \underline{s_{i-1}}$

For the root node: r(root) = 0

<u>u</u>

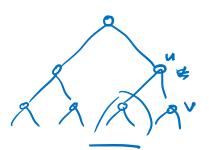
v is the left child of u:

$$r(v) = r(u)$$

v is the right child of u: (u has left child w) r(v) = r(u) + S S (S: sum of values in sub-tree of w)

Computing The Prefix Sums

- leaf node v holding value a_i : $r(v) = r_i = s_{i-1}$
- root node: r(root) = 0
- Node v is the left child of u: r(v) = r(u)
- Node v is the right child of u: r(v) = r(u) + S
 - Where: S =sum of values in left sub-tree of u_1

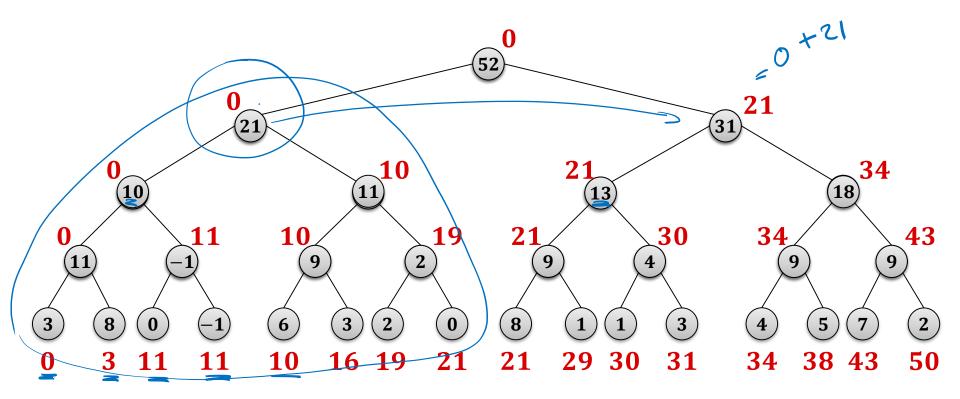


Algorithm to compute values r(v):

- Compute sum of values in each sub-tree (bottom-up)
 - Can be done in parallel time $O(\log n)$ with O(n) total work
- 2. Compute values r(v) top-down from root to leaves:
 - To compute the value r(v), only r(u) of the parent u and the sum of the left sibling (if v is a right child) are needed
 - Can be done in parallel time $O(\log n)$ with O(n) total work

Example

- 1. Compute sums of all sub-trees
 - Bottom-up (level-wise in parallel, starting at the leaves)
- 2. Compute values r(v)
 - Top-down (starting at the root)



Computing Prefix Sums

Theorem: Given a sequence $a_1, ..., a_n$ of n values, all prefix sums $s_i = \underline{a_1 \oplus \cdots \oplus a_i}$ (for $1 \le i \le n$) can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM,

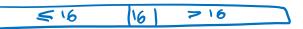
Proof:

- Computing the sums of all sub-trees can be done in parallel in time $O(\log n)$ using O(n) total operations.
- The same is true for the top-down step to compute the r(v)
- The theorem then follows from Brent's theorem:

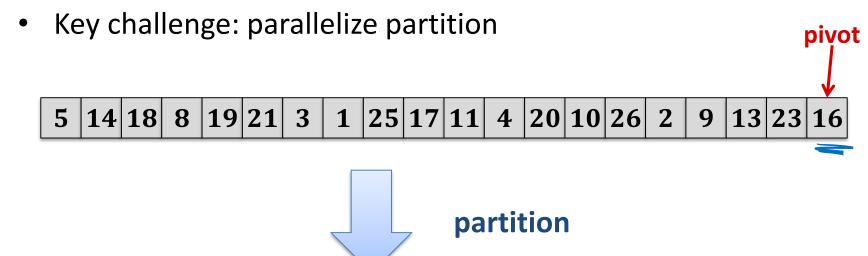
$$T_1 = O(n), \qquad T_\infty = O(\log n) \implies \frac{T_p}{=} < T_\infty + \frac{T_1}{p}$$

Remark: This can be adapted to other parallel models and to different ways of storing the value (e.g., array or list)

Parallel Quicksort



13 16 18 19 21 25 17 20 26 23



9

How can we do this in parallel?

11

4

For now, let's just care about the values ≤ pivot

|10|

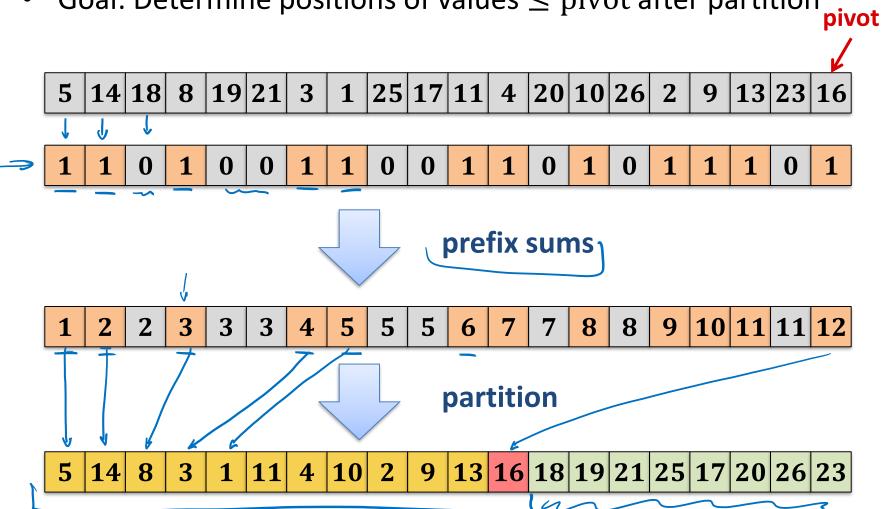
What are their new positions

8

3

Using Prefix Sums

Goal: Determine positions of values \leq pivot after partition



Applying to Quicksort

Theorem: On an EREW PRAM, using p processors, randomized quicksort can be executed in time T_p (in expectation and with high probability), where

$$T_p = O\left(\frac{n\log n}{p} + \log^2 n\right).$$

Proof:

Remark:

• We get optimal (linear) speed-up w.r.t. to the sequential algorithm for all $p = O(n/\log n)$.

Partition Using Prefix Sums

- The positions of the entries > pivot can be determined in the same way
- Prefix sums: $T_1 = O(n)$, $T_{\infty} = O(\log n)$
- Remaining computations: $T_1 = O(n)$, $T_{\infty} = O(1)$
- Overall: $T_1 = O(n)$, $T_{\infty} = O(\log n)$

Lemma: The partitioning of quicksort can be carried out in parallel in time $O(\log n)$ using $O\left(\frac{n}{\log n}\right)$ processors.

Proof:

• By Brent's theorem: $T_p \le \frac{T_1}{p} + T_{\infty}$

Other Applications of Prefix Sums

- Prefix sums are a very powerful primitive to design parallel algorithms.
 - Particularly also by using other operators than "+"

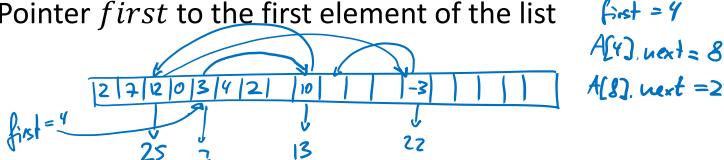
Example Applications:

- Lexical comparison of strings
- Add multi-precision numbers
- Evaluate polynomials
- Solve recurrences
- Radix sort / quick sort
- Search for regular expressions
- Implement some tree operations
- ...

Prefix Sums in Linked Lists

Given: Linked list L of length n in the following way

- Elements are in an array A of length n in an unordered way
- Each array element A[i] also contains a next pointer



Goal: Compute all prefix sums w.r.t. to the order given by the list

2-Ruling Set, of a Linked List

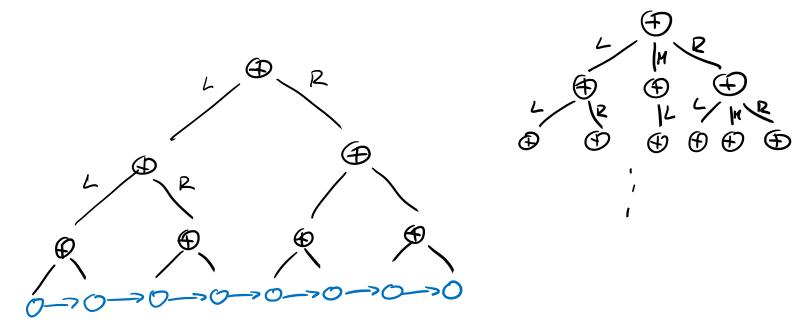
Given a linked list, select a subset of the entries such that

- No two neighboring entries are selected
- For every entry that is not selected, either the predecessor or the successor is selected
 - i.e., between two consecutive selected entries there are at least one and at most two unselected entries

 We will see that a 2-ruling set of a linked list can be computed efficiently in parallel

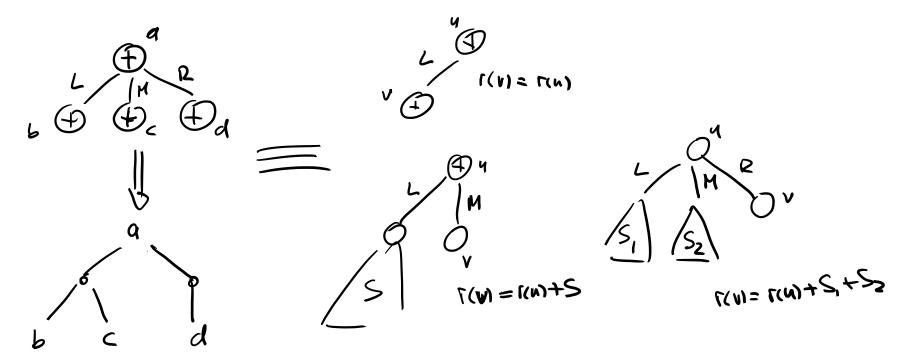
Observations:

- To compute the prefix sums of an array/list of numbers, we need a binary tree such that the numbers are at the leaves and an in-order traversal of the tree gives the right order
- The algorithm can be generalized to non-binary trees



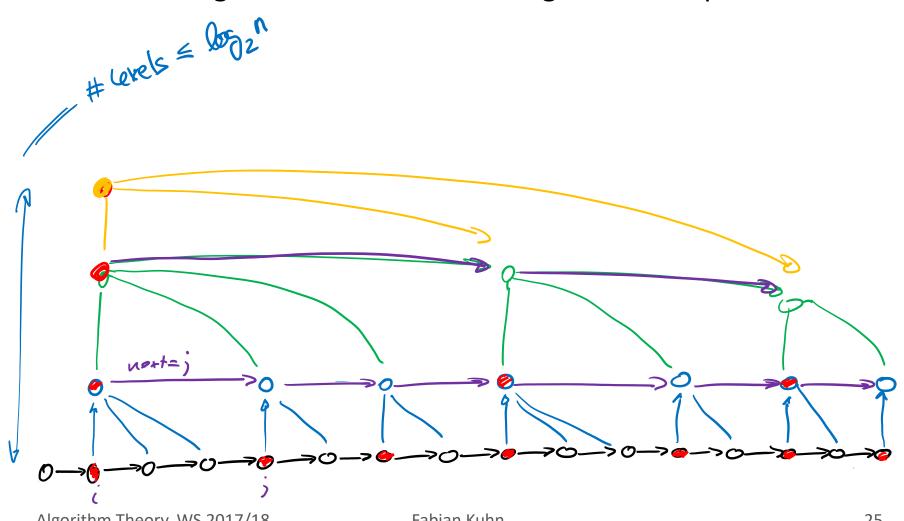
Observations:

- To compute the prefix sums of an array/list of numbers, we need a binary tree such that the numbers are at the leaves and an in-order traversal of the tree gives the right order
- The algorithm can be generalized to non-binary trees



Basic Idea:

Use 2-ruling sets to build a tree of logarithmic depth



Lemma: If a 2-Ruling Set of a list of length N can be computed in parallel with w(N) work and d(N) depth, all prefix sums of a list of length n can be computed in parallel with

• Work $O(w(n) + w(n/2) + w(n/4) + \cdots + w(1)) + O(n)$

d(4) >1

• Depth $O(\underline{d(n)} + \underline{d(n/2)} + \underline{d(n/4)} + \dots + \underline{d(1)}) + O(\underline{lgu})$

Proof Sketch:

build ruling sets: bottom level: $\omega(n)$ 2nd level: list of length $\leq \frac{n}{2}$: $\omega(\frac{n}{2})$ (also for the Lepth Y span)

additional work: O(n) additional span: $O(\log n)$ $\omega(n) = n \cdot \log^{4} n$, $d(n) = \log^{4} n$

Prefix Sums in Linked Lists by (Leg (leg (x))

Log-Star Function:

- For $i \ge 1$: $\log_2^{(i)} x = \log_2 \left(\log_2^{(i-1)} x \right)$, and $\log_2^{(0)} x = x$
- For $\underline{x > 2}$: $\log^* x := \min\{\underline{i} : \underline{\log^{(i)}} x \le 2\}$, for $x \le 2$: $\log^* x := 1$

fines to apply log to get value
$$\leq 2$$

atoms $\approx 10^{80}$
 $\log^{4} 10^{80} = 5$

Lemma: A 2-ruling set of a linked list of length n can be computed in parallel with work $O(n \cdot \log^* n)$ and span $O(\log^* n)$.

- i.e., in time $O(\log^* n)$ using O(n) processors
 - We will first see how to apply this and prove it afterwards...

Prefix Sums in Linked Lists

Lemma: A 2-ruling set of a linked list of length n can be computed in parallel with work $O(n \cdot \log^* n)$ and span $O(\log^* n)$.

Theorem: All prefix sums of a linked list of length n can be computed in parallel with total work $O(n \cdot \log^* n)$ and span $O(\log n \cdot \log^* n)$.

• i.e., in time $O(\log n \cdot \log^* n)$ using $O(n/\log n)$ processors.

Work:
$$w(n) + w(u/2) + ... + w(1)$$

 $\leq O(\log^{4} n \cdot (u + \frac{u}{2} + \frac{u}{4} + ... + 1)) = O(u \log^{4} n)$
Span: $O(\log n \cdot \log^{4} n)$

Computing 2-Ruling Sets

- Instead of computing a 2-ruling set, we first compute a coloring of the list:
 - each list element gets a color s.t. adjacent elements get different colors
- Each element initially has a unique $\log n$ -bit label in $\{1, ..., N\}$
 - can be interpreted as an initial coloring with N colors

Algorithm runs in phases:

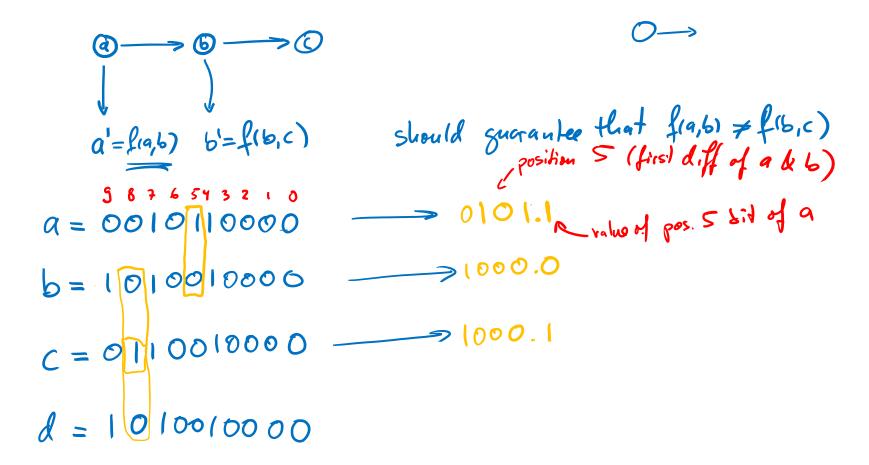
Each phase: compute new coloring with smaller number of colors

We will show that

- #phases to get to O(1) colors is $O(\log^* n)$
- each phase has O(n) work and O(1) depth

Reducing the number of colors

Assume that we start with a coloring with colors $\{0, ..., x-1\}$



Reducing the number of colors

Assume that we start with a coloring with colors $\{0, ..., x-1\}$

get valid new coloring initial coloring:
$$\lfloor \log_2 x \rfloor$$
 bits initial coloring: $\lfloor \log_2 x \rfloor \cdot 2 + 1$

that: $\lfloor \log_2 (\lfloor \log_2 x \rfloor \cdot 2 + 1) \rfloor \approx \log_2 \log_2 x + 1$

weed to repeat $O(\log^2 n)$ times to get to $O(1)$ colors

Reducing the number of colors

Assume that we start with a coloring with colors $\{0, ..., x - 1\}$

Stops when colors are
$$\in ?0, ..., 53$$

$$11 \times \longrightarrow = 101$$

$$1000 \longrightarrow = 111$$
as long as the old color > 5 , the new color is strictly smaller