Chapter 10
Parallel Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI

FREIBURG

UNI
FREIBURG

Parallel Computations

T ,: time to perform comp. with p procs
* T;:work (total # operations)

— Time when doing the
computation sequentially

dagths
* To: critical path /ispanz

— Time when parallelizing as
much as possible

e Lower Bounds:

Algorithm Theory, WS 2017/18 Fabian Kuhn

Parallel Computations

UNI

FREIBURG

T ,: time to perform comp. with p procs

* Lower Bounds:

] T4
 Parallelism:
(0/@)

— maximum possible speed-up

* Linear Speed-up:
Ty
— = 0(p)

T, 2

Algorithm Theory, WS 2017/18 Fabian Kuhn

Brent’s Theorem

UNI

FREIBURG

(Brent’s Theorem On p processors, a parallel computation can be
performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors p = O(T, /Tw), it is
possible to achieve a linear speed-up. -

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

PRAM

UNI
f

FREIBURG

Back to the PRAM:
* Shared random access memory, synchronous computation steps
* The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

* Concurrent memory access by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
 Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior

* This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

PRAM

UNI

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
% — Weak CRCW: concurrent write only OK if all processors write 0
— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values
— Priority CRCW: value of processor with highest ID is written
« — Strong CRCW: largest (or smallest) value is written

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

FREIBURG

UNI

| Prefix Sums,

FREIBURG

* The following works for any associative binary operator @:

associativity: (a®b)Dc = aP(bDc)

All-Prefix-Sums: Given a sequence of n values a4, ..., a,,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S1,52, ++,Sp = 1,210z, a,Da,@asz, ..., a0 - Day,

* Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3

S1, -, Sg = 2, 9,111, 1<, 16 22,2

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

UNI

Computing the Sum

FREIBURG

* Let'sfirstlookats,, = a;®Da,d - Da,

* Parallelize using a binary tree:
weil: O
Span é(/aéoﬁ

(D
/ \ \A;Iwb Ved's Wiw
/9\ /@ can (004‘)«'-(S, ™ e O(ﬂyu)
\ uﬁwz @(“40“'7 growssss

R VA /@\ /@\

A A, Ay A4 Qs A,y Qg

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Computing the Sum

UNI
f

FREIBURG

Lemma: The sum s, = a;Da,® --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O (n).

/

Corollary: The sum s,, can be computed in time O(log n) using
O(n/logn) processors on an EREW PRAM.

Proof:

Proof:

* Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

Algorithm Theory, WS 2017/18 Fabian Kuhn

Getting The Prefix Sums s, . s, =2/

/

UNI
f

FREIBURG

* Instead of computing the sequence s4, s>, ..., S, let’s compute
71, o,y = 0,81,85, ..., 51 (0: neutral element w.r.t. @)

——

r, .., =0,a,a1Da,, ..., a;D - Da,,_4

* Together with s,,, this gives all prefix sums

* Prefixsumr; =s;_1 =a,D - Da;_q:

©)
© ©

© ©. (@) ©

(@) (@) (@) (@) (@) (@) @ (&
@) (@) (@) (@) (1)) () (a9 @y @) @y, @ey @
714

(513)

Algorithm Theory, WS 2017/18 Fabian Kuhn

Getting The Prefix Sums

UNI
f

FREIBURG

e

Claim: The prefixsumr; = a,® --- Da;_4 is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing q;
such that v is in the right sub-tree of u.

J
®=,

& N N
O N ® @)
® @ @ @ ® @ ®

® 06 © @ z © 66 & 6 86 &

—_

/
|
l
|

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

UNI

Computing The Prefix Sums %

For each node v of the binary tree, define r(v) as follows:

* r(v)isthe sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of u.

For a leaf node v holding value a;: r(v) = r; = s;_4

—

For the root node: r(root) =0 @

/)w @For all other nodes v: \ v is the right child of u:
I (u has left child w)

Wuvis the left child of u:
r(v) =r(u)

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

) rlv) =r(uw)+S

——— R

(S: sum of values in
sub-tree of w)

FREIBURG

Computing The Prefix Sums

UNI
FREIBURG

* leaf node v holdingvalue a;: r(v) =r; = s;_4
* root node: r(root) =0
* Node v is the left child of u: r(v) = r(u)
* Node v is the right child o?u: rv) =r(u)+S
— Where: S =sum of values in left sub-tree of u '\ '

Algorithm to compute values r(v): A A ARAY

1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time O(logn) with O(n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time O(logn) with O(n) total work

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Example

UNI
FREIBURG

1. Compute sums of all sub-trees
— Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)
— Top-down (starting at the root)

0 o x
‘ \ =< ¢ 21
o “®
0 10 2 34
(19 (1) (13 (18
0 11 10 19 21 30 34 43

1) (9) (2) (9) (4 (9)
3 @ Q 99 @) O @ O 6@ @
3 1 : .

1 11 21 29 30 31 34 38 43 50

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Computing Prefix Sums

UNI
FREIBURG

Theorem: Given a sequence a4, ..., a, of n values, all prefix sums
Si = a,D - Da; (for1 < i < n) can be computed in time O(logn)
using O(n/logn) processors on anEREW PRAM(

Proof:

* Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

* The same is true for the top-down step to compute the r(v)

e The theorem then follows from Brent’s theorem:

T
T, = 0(n), T = 0(ogn) = Ty < Te _|_?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Parallel Quicksort =% 6] =6

UNI
f

FREIBURG

* Key challenge: parallelize partition pivot

5(14/18| 8 |19(21| 3 | 1 |25|17|11| 4 |20({10|26| 2 | 9 |13|23|16

partition

5(14/8 | 3|1 (114 |10/ 2 | 9 (13|16|18/19|21|25/17|20(26|23

* How can we do this in parallel?
* For now, let’s just care about the values < pivot
 What are their new positions

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

UNI

Using Prefix Sums

FREIBURG

* Goal: Determine positions of values < pivot after partition .

pivot
5114/18| 8 (19|21 3 | 1 |25(17|11| 4 [20(|10(26| 2 | 9 |{13|23|16
Ly
—(1/12/0|17/0{0{1{/1/0(0(1/1|/0|1|0|1|1/1(0/1
refix sums
4 ka)

!
1/2/2|/3(3/3|4/5|5/5/6|7(7|8,8/9|10(11|11|12
vV

L5 14/ 8 | 3|1 111|4 (10, 2|9 (13|16/18(19(|21(25|17(|20(26|23
(W\AN

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Applying to Quicksort

UNI
FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with
high probability), where

nlogn
Tp=0(5 +10g2n).

p
Proof:

w(ﬁ.k (\)U Pm};hM S‘re?‘ @ﬁ_}/ g?au 64, ?ﬂljﬁ(hh 51(?: 6(%14)
*\pla(weik (v &6;\7/ 'bvlq\ éﬁu: O(fﬂszn)

Remark:

 We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Partition Using Prefix Sums

UNI
f

FREIBURG

* The positions of the entries > pivot can be determined in the
same way

* Prefixsums:T; = 0(n), T, = 0(logn)
* Remaining computations: T; = 0(n), T, = 0(1)

 Overall: T, = 0(n), T, = 0(logn)

Lemma: The partitioning of quicksort can be carried out in
parallel in time O(logn) using O (@) processors.
Proof:

By Brent’s theorem: T, < % + T

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Other Applications of Prefix Sums

UNI
f

FREIBURG

* Prefix sums are a very powerful primitive to design parallel
algorithms.
— Particularly also by using other operators than “+”

Example Applications:

* Lexical comparison of strings

* Add multi-precision numbers

e Evaluate polynomials

* Solve recurrences

* Radix sort / quick sort

e Search for regular expressions

* Implement some tree operations

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Prefix Sums in Linked Lists

UNI

Given: Linked list L of length n in the following way
* Elements arein an array A of length n in an unordered way
* Each array element A[i] also contains a next pointer

 Pointer first to the first element of the list (st = ¢
), A wet = 8
1213]e]o|3[v 2] |w| | []-3] | | |) AL8), wext =2

{Ad‘i_/zls_/‘j ; ’

12 te

Goal: Compute all prefix sums w.r.t. to the order given by the list

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

FREIBURG

. 2-Ruling SitSOf a Linked List

UNI
FREIBURG

Given a linked list, select a subset of the entries such that
* No two neighboring entries are selected

* For every entry that is not selected, either the predecessor or
the successor is selected

— i.e., between two consecutive selected entries there are at least one
and at most two unselected entries

—()/—')@——"(‘ —O—>&—> 0—7@’—@’70’—)@/50

* We will see that a 2-ruling set of a linked list can be computed
efficiently in parallel

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Using 2-Ruling Sets to Get Prefix Sums

UNI
f

FREIBURG

Observations:

* To compute the prefix sums of an array/list of numbers, we

need a binary tree such that the numbers are at the leaves
and an in-order traversal of the tree gives the right order

* The algorithm can be generalized to non-binary trees

N

&

/@\ /N
—0— O—->

Algorithm Theory, WS 2017/18

®
7\

AN

O—> O—>0—2>0—>0

Fabian Kuhn

L @ (74
/ T
& ©®© &
Lo 1L ek
& @

® OO @

23

UNI

Using 2-Ruling Sets to Get Prefix Sums

FREIBURG

Observations:

* To compute the prefix sums of an array/list of numbers, we
need a binary tree such that the numbers are at the leaves
and an in-order traversal of the tree gives the right order

* The algorithm can be generalized to non-binary trees

®. .9
L/ H\Q' ., Y ATCR Mw)
b éc @d & A

b -

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

FREIBURG

Using 2-Ruling Sets to Get Prefix Sums

UNI

Basic Idea:
e Use 2-ruling sets to build a tree of logarithmic depth
2,“
A
N

ORI NN \”\@T’

O ;@ 50— @—>0O0— 7’——?0 >O—7O———5c>-——

0—»@-——50
()

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Using 2-Ruling Sets to Get Prefix Sums ;

wlryz

Lemma: If a 2-Ruling Set of a list of length N can be computed in
parallel with w(N) work and d(N) depth, all prefix sums of a list

of length n can be computed in parallel with

« Work O(w(n) +w(n/2) + w(n/4) + -+ w(1)) +0Gk)

* Depth O(CM +dn/2) +dn/4) + -+ d(_l)) + O(Lgn)
Proof Sketch: dwr 7|

build ruling sels ¢ Lofbu level 1w
. Lh level : \blof (awgth ¥ w(“r2)

(also fN'K«l Lﬂf)‘LYSFau)
QJXZJ?M O qa(x,,‘qéna(Jpau 6([69»\)

(O(V\):V\',a%*m y 6(("\)= (05&;/\

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

UNI
FREIBURG

UNI
FREIBURG

Prefix Sums in Linked Lists 4,"«= g)

Log-Star Function:

* Fori = 1: loggi) x = log, (loggi_l) x), and loggo) X=X

 Forx > 2:log"x = min{i_: log® x S/z}, forx < 2:log"x =1

e

by Yo 0()(‘7 (092 b ?u[e < 2 bty =2

Halows low Qy«r go

Lemma: A 2-ruling set of a linked list of length n can be computed in
parallel with work O(n - log* n) and span O(log* n).

* i.e., intime O(log* n) using O(n) processors
— We will first see how to apply this and prove it afterwards...

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Prefix Sums in Linked Lists

UNI
FREIBURG

Lemma: A 2-ruling set of a linked list of length n can be computed in

parallel with \(vork O(n -log*n) and span O(log* n).
)

Theorem: All prefix sums of a linked list of length n can be
computed in parallel with total work Q(n -log* n) and span

O(logn -log* n).
* i.e. intime O(logn -log*n) using O(n/logn) processors.

wetk 1 w0+ W()+ N wnY)

50@37*“ . (U\ +g +'—3— +...4 ())=@(u,@8*u)
2 O fogu + o &)

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Computing 2-Ruling Sets

UNI
FREIBURG

* Instead of computing a 2-ruling set, we first compute a coloring
of the list:

— each list element gets a color s.t. adjacent elements get different colors
r_\

* Each element initially has a unique log n-bit label in {1, ..., N}

——

— can be interpreted as an initial coloring with N colors

p—————y

./_

o b—0—>6—>0—9 —>@—>0 079

Algorithm runs in phases:

* Each phase: compute new coloring with smaller number of colors

We will show that

« #phases to getto O(1) colorsis O(log* n)
 each phase has O(n) work and 0(1) depth

Algorithm Theory, WS 2017/18 Fabian Kuhn 29

Reducing the number of colors

UNI
FREIBURG

Assume that we start with a coloring with colors {0, ..., x — 1}

@®@—>0®—0O O—

|

'_fab) b=l Slsuld cueranlee Hoat fm,e) ¢£cs,c)
a '&?’7 0={ 5“/?05,«/,‘” S (fue) 0(#4 4 L)
56% 65932 « 9 £

A= ©O0I1O (10000 - | R valuo ¥ @”‘gxﬂ ”’J ;.

L= Llojo9loeo — 2
C__:O“OO(@OOO -

5« = |O{O'°(OOOO

Algorithm Theory, WS 2017/18 Fabian Kuhn 30

Reducing the number of colors

Assume that we start with a coloring with colors {0, ..., x — 1}
7?-4 \m(‘fl ww colsom 5
\W\‘\\%ﬂl\ (O(W\'hk : Lﬂ@?l xJ Io:‘l's
\“'f") W colec < Lﬁ’az x]-2+1

B [y, (Usxd2 +0)| & Gy +)

ool o H’?eﬂ\ 9(&2““) J%wuzs&bgd Yo (1) coloscs

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

UNI

Reducing the number of colors

FREIBURG

Assume that we start with a coloring with colors {0, ..., x — 1}

Shogs wlen coles are € fo .,<% S~ (lon,

l‘x ’%5\01

e
_ —
——

[0©0 —> < ||/

as (o«3 as Mm old coles > S; He wew
(6(04' S 5"0'3(:‘(7 qu'(gy

Algorithm Theory, WS 2017/18 Fabian Kuhn 32

