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Computing Prefix Sums

Theorem: Given a sequence 𝑎1, … , 𝑎𝑛 of 𝑛 values, all prefix sums 
𝑠𝑖 = 𝑎1⨁⋯⨁𝑎𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) can be computed in time 𝑂(log 𝑛)
using 𝑂 Τ𝑛 log 𝑛 processors on an EREW PRAM.

Proof:

• Computing the sums of all sub-trees can be done in parallel in 
time 𝑂 log 𝑛 using 𝑂 𝑛 total operations.

• The same is true for the top-down step to compute the 𝑟(𝑣)

• The theorem then follows from Brent’s theorem:

𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂 log 𝑛 ⟹ 𝑇𝑝 < 𝑇∞ +
𝑇1
𝑝

Remark: This can be adapted to other parallel models and to 
different ways of storing the value (e.g., array or list)
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Prefix Sums in Linked Lists

Given: Linked list 𝐿 of length 𝑛 in the following way

• Elements are in an array 𝐴 of length 𝑛 in an unordered way

• Each array element 𝐴 𝑖 also contains a next pointer

• Pointer 𝑓𝑖𝑟𝑠𝑡 to the first element of the list

Goal: Compute all prefix sums w.r.t. to the order given by the list
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2-Ruling Set of a Linked List

Given a linked list, select a subset of the entries such that

• No two neighboring entries are selected

• For every entry that is not selected, either the predecessor or 
the successor is selected
– i.e., between two consecutive selected entries there are at least one 

and at most two unselected entries

• We will see that a 2-ruling set of a linked list can be computed 
efficiently in parallel
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Using 2-Ruling Sets to Get Prefix Sums

Observations:

• To compute the prefix sums of an array/list of numbers, we 
need a binary tree such that the numbers are at the leaves 
and an in-order traversal of the tree gives the right order

• The algorithm can be generalized to non-binary trees
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Using 2-Ruling Sets to Get Prefix Sums

Lemma: If a 2-Ruling Set of a list of length 𝑁 can be computed in 
parallel with 𝑤 𝑁 work and 𝑑 𝑁 depth, all prefix sums of a list 
of length 𝑛 can be computed in parallel with

• Work    𝑂 𝑤 𝑛 + 𝑤 Τ𝑛 2 + 𝑤 Τ𝑛 4 +⋯+ 𝑤 1

• Depth 𝑂 𝑑 𝑛 + 𝑑 Τ𝑛 2 + 𝑑 Τ𝑛 4 +⋯+ 𝑑 1

Proof Sketch:
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Prefix Sums in Linked Lists

Log-Star Function:

• For 𝑖 ≥ 1: log2
(𝑖)
𝑥 = log2 log2

𝑖−1
𝑥 , and log2

0
𝑥 = 𝑥

• For 𝑥 > 2: log∗ 𝑥 ≔ min 𝑖 ∶ log(𝑖) 𝑥 ≤ 2 , for 𝑥 ≤ 2: log∗ 𝑥 ≔ 1

Lemma: A 2-ruling set of a linked list of length 𝑛 can be computed in 
parallel with work 𝑂 𝑛 ⋅ log∗ 𝑛 and span 𝑂 log∗ 𝑛 .

• i.e., in time 𝑂 log∗ 𝑛 using 𝑂(𝑛) processors
– We will first see how to apply this and prove it afterwards…
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Prefix Sums in Linked Lists

Lemma: A 2-ruling set of a linked list of length 𝑛 can be computed in 
parallel with work 𝑂 𝑛 ⋅ log∗ 𝑛 and span 𝑂 log∗ 𝑛 .

Theorem: All prefix sums of a linked list of length 𝑛 can be 
computed in parallel with total work 𝑂 𝑛 ⋅ log∗ 𝑛 and span 
𝑂 log 𝑛 ⋅ log∗ 𝑛 .

• i.e., in time 𝑂 log 𝑛 ⋅ log∗ 𝑛 using 𝑂 Τ𝑛 log 𝑛 processors.
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Computing 2-Ruling Sets

• Instead of computing a 2-ruling set, we first compute a coloring 
of the list:
– each list element gets a color s.t. adjacent elements get different colors

• Each element initially has a unique log 𝑛-bit label in 1,… ,𝑁
– can be interpreted as an initial coloring with 𝑁 colors

Algorithm runs in phases:

• Each phase: compute new coloring with smaller number of colors

We will show that

• #phases to get to 𝑂 1 colors is 𝑂 log∗ 𝑛

• each phase has 𝑂(𝑛) work and 𝑂 1 depth
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Reducing the number of colors

Assume that we start with a coloring with colors 0,… , 𝑥 − 1
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From a Coloring to a 2-Ruling Set

Assume that we are given a coloring with colors 0,… , 5
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Prefix Sums in Linked Lists

Lemma: A 2-ruling set of a linked list of length 𝑛 can be computed in 
parallel with work 𝑂 𝑛 ⋅ log∗ 𝑛 and span 𝑂 log∗ 𝑛 .

Theorem: All prefix sums of a linked list of length 𝑛 can be 
computed in parallel with total work 𝑂 𝑛 ⋅ log∗ 𝑛 and span 
𝑂 log 𝑛 ⋅ log∗ 𝑛 .

• i.e., in time 𝑂 log 𝑛 ⋅ log∗ 𝑛 using 𝑂 Τ𝑛 log 𝑛 processors.

List Ranking Problem: Compute the rank of each element of a 
linked list (rank: position in the list)
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Distributed Coloring
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Distributed Coloring


