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Computing Prefix Sums
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Theorem: Given a sequence a4, ..., a, of n values, all prefix sums
S; = a1 - @Da; (for1 < i < n)can be computed intime O(logn)

. \ ] "§‘
using O(n/logn) processors on an EREW PRAM.

Proof:

* Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

* The same is true for the top-down step to compute the r(v)

 The theorem then follows from Brent’s theorem:

T
T, = 0(n), T = 0(ogn) = Ty < Te _|_?1

—,

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)
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Prefix Sums in Linked Lists

Given: Linked list L of length n in the following way
* Elements arein an array A of length n in an unordered way
* Each array element A[i] also contains a next pointer

* Pointer first to the first el f the list
Y V.

T (1 - SRR
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Goal: Compute all prefix sums w.r.t. to the order given by the list
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2-Ruling Set of a Linked List
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Given a linked list, select a subset of the entries such that
* No two neighboring entries are selected

* For every entry that is not selected, either the predecessor or
the successor is selected

— i.e., between two consecutive selected entries there are at least one
and at most two unselected entries

D O—O 0@~ O—+@ 0

* We will see that a 2-ruling set of a linked list can be computed
efficiently in parallel
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Using 2-Ruling Sets to Get Prefix Sums
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Observations:

* To compute the prefix sums of an array/list of numbers, we
need a binary tree such that the numbers are at the leaves
and an in-order traversal of the tree gives the right order

* The algorithm can be generalized to non-binary trees

I m > -
\_,_QZ) = & —0—>0—>0—=O——>0—>a
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Using 2-Ruling Sets to Get Prefix Sums ;
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Lemma: If a 2-Ruling Set of a list of Iengthg can be computed in
parallel with w(N) work and d(N) depth, all prefix sums of a list
of length n can be computed in parallel with

* Work O(W(n) +wn/2)+wn/4)+---+ W(l))
* Depth O(d(n) +dn/2)+dn/4) + -+ d(l))
Proof Sketch:
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Prefix Sums in Linked Lists

Log-Star Function:

* Fori = 1: loggi) x = log, (loggi_l) x), and loggo) X =X

 Forx > 2:log"x = min{i : log® x < 2}, forx < 2:log"x =1

FLemma: A 2-ruling set of a linked list of length n can be computed in
parallel withywork O(n - log” n)!and span 0 (log” n)I.
* i.e., intime O(log* n) using O(n) processors

— We will first see how to apply this and prove it afterwards...

S -
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Prefix Sums in Linked Lists
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Lemma: A 2-ruling set of a linked list of length n can be computed in
parallel with work O(n - log* n) and span O(log* n).

Theorem: All prefix sums of a linked list of length n can be
computed in parallel with total work O(n - log® n) and span
O(logn -log™n).

* i.e. intime O(logn -log*n) using O(n/logn) processors.
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Computing 2-Ruling Sets
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* Instead of computing a 2-ruling set, we first compute a coloring
of the list:

— each list element gets a color s.t. adjacent elements get different colors

* Each element initially has a unique log n-bit label in {1, ..., N}

— can be interpreted as an initial coloring with N colors

Algorithm runs in phases:
* Each phase: compute new coloring with smaller number of colors

We will show that
« #phases to getto O(1) colorsis O(log* n)
* each phase has O(n) work and 0(1) depth
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Reducing the number of colors
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Assume that we start with a coloring with colors {0, ..., x — 1}

@—=@O—@
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A= OQIO | OO0
b= \0)ea( 009 O

C = G)“(‘)O( 6 OO0
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From a Coloring to a 2-Ruling Set
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Assume that we are given a coloring with colors {0, ..., 5}
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Prefix Sums in Linked Lists
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Lemma: A 2-ruling set of a linked list of length n can be computed in
parallel with work O(n - log* n) and span O(log* n).

Theorem: All prefix sums of a linked list of length n can be

computed in parallel with total work O(n - log* n) and span
[O (logn - log” n)J [
* j.e. intime 0(logn -log* n)jusing O(n/logn) processors.

List Ranking Problem: Compute the rank of each element of a
linked list (rank: position in the list)
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Distributed Coloring ,
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Distributed Coloring
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