

Repetition Probability Theory

Algorithm Theory WS 2017/18

Fabian Kuhn

Randomized Algorithms

Randomized Algorithms

- An algorithm that uses (or can use) random coin flips in order to make decisions
- randomization can be a powerful tool to make algorithms faster or simpler

First: Short Repetition of Basic Probability Theory

- We need: basic discrete probability theory
 - probability spaces, probability events, independence, random variables, expectation, linearity of expectation, Markov inequality
- Literature, for example
 - your old probability theory book / lecture notes / ...
 - Appendix C of book of Cormen, Rivest, Leiserson, Stein
 - http://www.ti.inf.ethz.ch/ew/courses/APC15/material/ra.pdf

Probability Space and Events

Definition: A (discrete) **probability space** is a pair (Ω, \mathbb{P}) , where

- Ω : (countable) set of elementary events
- \mathbb{P} : assigns a probability to each $\omega \in \Omega$

$$\mathbb{P}:\Omega \to \mathbb{R}_{\geq 0}$$
 s.t. $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$

Definition: An event \mathcal{E} is a subset of Ω

- Event $\mathcal{E} \subseteq \Omega$: set of basic events
- Probability of ${\cal E}$

$$\mathbb{P}(\mathcal{E}) \coloneqq \sum_{\omega \in \mathcal{E}} \mathbb{P}(\omega)$$

Example: Probability Space, Events

Example: Probability Space, Events

Independent Events

Definition: Events $\mathcal{A} \subseteq \Omega$ and $\mathcal{B} \subseteq \Omega$ are **independent** iff

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})$$

Example:

Random Variables

Definition: A random variable X is a real-valued function on the elementary events Ω

$$X:\Omega o \mathbb{R}$$

- We usually write X instead of $X(\omega)$
- We also write

$$\mathbb{P}(X = x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})$$

Examples:

- $X^{top}: X^{top}(1) = 1, X^{top}(2) = 2, ..., X^{top}(6) = 6$
- $X^{bot}: X^{bot}(1) = 6, X^{bot}(2) = 5, ..., X^{bot}(6) = 1$
- Note that for all $\omega \in \Omega$, $X^{top}(\omega) + X^{bot}(\omega) = 7$
- To denote this, we write $X^{top} + X^{bot} = 7$

Indicator Random Variables

A random variable with only takes values 0 and 1 is called a **Bernoulli random variable** or an **indicator random variable**.

Independent Random Variables

Definition: Two random variables X and Y are called **independent** if

$$\forall x, y \in \mathbb{R} : \mathbb{P}(X = x \land Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Independent Random Variables

Definition: A collection of andom variables $X_1, X_2, ..., X_n$ on a probability space Ω is called **mutually independent** if

$$\forall k \geq 2, 1 \leq i_1 < \dots < i_k \leq n, \forall x_{i_1}, \dots, x_{i_k} \in \mathbb{R} :$$

$$\mathbb{P}(X_{i_1} = x_{i_1} \wedge \dots \wedge X_{i_k} = x_{i_k}) = \mathbb{P}(X_{i_1} = x_{i_1}) \cdot \dots \cdot \mathbb{P}(X_{i_k} = x_{i_k})$$

Expectation

Definition: The expectation of a random variable X is defined as

$$\mathbb{E}[X] := \sum_{\mathbf{x} \in X(\Omega)} \mathbf{x} \cdot \mathbb{P}(X = \mathbf{x}) = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)$$

Example:

• recall: X^{top} is outcome of rolling a die

Expectation: Examples

Sums and Products of Random Variables

Linearity of Expectation:

For random variables X and Y and any $c \in \mathbb{R}$, we have

$$\mathbb{E}[cX] = c \cdot \mathbb{E}[X]$$

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

holds also if the random variables are not independent

Product of Random Variables:

For two **independent** random variables X and Y, we have

$$\mathbb{E}[X\cdot Y]=\mathbb{E}[X]\cdot\mathbb{E}[Y]$$

Sums and Products of Random Variables

Linearity of Expectation:

For random variables X and Y and any $c \in \mathbb{R}$, we have

$$\mathbb{E}[cX] = c \cdot \mathbb{E}[X], \qquad \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Sums and Products of Random Variables

Product of Random Variables:

For two **independent** random variables X and Y, we have

$$\mathbb{E}[X\cdot Y]=\mathbb{E}[X]\cdot\mathbb{E}[Y]$$

Linearity of Expectation: Example

Sequence of coin flips: $C_1, C_2, ... \in \{H, T\}$

Stop as soon as the first H turns up

Random variable X: number of T before first H

Indicator random variable X_i ($i \ge 1$):

• $X_i = 1$: i^{th} coin flip happens and its outcome is T

 $X_i = 0$: otherwise

Markov's Inequality

Lemma: Let *X* be a nonnegative random variable.

Then for all c > 0

$$\mathbb{P}(X \ge c \cdot \mathbb{E}[X]) \le \frac{1}{c}$$

Conditional Probabilities

For events $\mathcal{A} \subseteq \Omega$ and $\mathcal{B} \subseteq \Omega$, the **conditional probability** of \mathcal{A} given \mathcal{B} is defined as

$$\mathbb{P}(\mathcal{A}|\mathcal{B})\coloneqq rac{\mathbb{P}(\mathcal{A}\cap\mathcal{B})}{\mathbb{P}(\mathcal{B})}$$

Conditioning on event \mathcal{B} defines a new probability space $(\Omega \setminus \mathcal{B}, \mathbb{P}')$

$$\forall \omega \in \Omega \setminus B : \mathbb{P}'(\omega) = \frac{\mathbb{P}(\omega)}{\mathbb{P}(\mathcal{B})}.$$

Two events are independent iff $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

Law of Total Probability / Expectation

Lemma: Let X and Y be two random variables on the same probability space (Ω, \mathbb{P}) . We then have

$$\forall x \in \mathbb{R} : \mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} \mathbb{P}(X = x \mid Y = y) \cdot \mathbb{P}(Y = y).$$

$$\mathbb{E}[X] = \sum_{y \in Y(\Omega)} \mathbb{E}[X \mid Y = y] \cdot \mathbb{P}(Y = y)$$

Important Discrete Prob. Distributions

Bernoulli Random Variable $X:\Omega \to \{0,1\}$

$$\mathbb{P}(X = 1) = p, \mathbb{P}(X = 0) = 1 - p, \quad \mathbb{E}[X] = p$$

Binomial Random Variable $X \sim Bin(n, p)$

$$\forall k \in \{0, ..., n\} : \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, \qquad \mathbb{E}[X] = np$$

• measures number of ones in n independent biased coin flip

Geometric Random Variables $X \sim \text{Geom}(p)$

$$\forall k \ge 1 : \ \mathbb{P}(X = k) = p(1 - p)^{k - 1}, \qquad \mathbb{E}[X] = \frac{1}{p}$$

 measures number independent biased coin flips are necessary to get one "heads"