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Randomized Algorithms

* An algorithm that uses (or can use) random coin flips in order
to make decisions

* randomization can be a powerful tool to make algorithms
faster or simpler

First: Short Repetition of Basic Probability Theory
* We need: basic discrete probability theory

— probability spaces, probability events, independence, random
variables, expectation, linearity of expectation, Markov inequality

e Literature, for example
— your old probability theory book / lecture notes / ...
— Appendix C of book of Cormen, Rivest, Leiserson, Stein
— http://www.ti.inf.ethz.ch/ew/courses/APC15/material/ra.pdf
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Probability Space and Events

UNI
f

FREIBURG

Definition: A (discrete) probability space is a pair (£, I?), where
* (): (countable) set of elementary events
e [P: assigns a probability to each w € ()

P:Q->R,, s.t ZIP’(a))=1

wE()

Definition: An event € is a subset of ()
e Event £ C (): set of basic events
* Probability of £

P(E) = 2 P(w)

WEE
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Example: Probability Space, Events
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Example: Probability Space, Events
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Independent Events
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Definition: Events A € ( and B <€ () are independent iff
P(ANB) =P(A) - P(B)

Example:
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Random Variables
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Definition: A random variable X is a real-valued function on the

elementary events ()
X:Q0-R

* We usually write X instead of X(w)

 We also write
PX=x)=PHwed:X(w)=x})

Examples:
o X'P:X'0P(1) =1,X"P(2)=2,..,X"P(6) =6
o XPot: xPot(1) = 6,XP°%(2) =5,..., X"t (6) = 1

« Note that for all w € Q, Xt°P(w) + XP°U(w) = 7
 To denote this, we write Xt°P 4 xbot — 7
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Indicator Random Variables
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A random variable with only takes values 0 and 1 is called a
Bernoulli random variable or an indicator random variable.
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Independent Random Variables
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Definition: Two random variables X and Y are called independent if

VX, yER: PX=xAY=y)=PX=x) -P(Y =y)
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Independent Random Variables
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Definition: A collection of andom variables X;, X5, ..., X,, on a
probability space (1 is called mutually independent if

Vk > 2,1 < il < e < ik Sn,‘v’xil,...,xik eER:

P(Xil = xil N "'/\Xik = xik) == [P)(Xil — xil) BT I[D(Xik — xik)
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Expectation

Definition: The expectation of a random variable X is defined as

E[X] = 2 x-P(X = x) = z X(w) - P(w)
xeEX(Q) wWE)

Example:
 recall: Xt°P js outcome of rolling a die
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Expectation: Examples
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Sums and Products of Random Variables
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Linearity of Expectation:
For random variables X and Y and any ¢ € R, we have

ElcX] = c-E[X]
E[X + Y] = E[X] + E[Y]

* holds also if the random variables are not independent
Product of Random Variables:

For two independent random variables X and Y, we have
E[X - Y] = E|X] : E[Y]
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Sums and Products of Random Variables
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Linearity of Expectation:

For random variables X and Y and any ¢ € R, we have

ElcX] = c-E|[X],
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E[X + Y] = E[X] + E[Y]
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Sums and Products of Random Variables
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Product of Random Variables:

For two independent random variables X and Y, we have
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E[X - Y] = E[X] - E[Y]
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Linearity of Expectation: Example

Sequence of coin flips: C;,C,, ... € {H, T}
e Stop as soon as the first H turns up

Random variable X: number of T before first H

Indicator random variable X; (i = 1):

e X; = 1:i'" coin flip happens and its outcome is T
X; = 0: otherwise
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Markov’s Inequality
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Lemma: Let X be a nonnegative random variable.

Thenforallc > 0
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P(X > c- E[X]) sz
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Conditional Probabilities
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For events A € () and B <€ (), the conditional probability of A
given B is defined as

Conditioning on event B defines a new probability space (0 \ B, P')

Vw € Q\B: P’(w)z%.

Two events are independent iff P(A|B) = P(A)
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Law of Total Probability / Expectation

Lemma: Let X and Y be two random variables on the same
probability space (), P). We then have

VxER:P(X =x) = z PX=x|Y=y)-P(Y=1y).
yeY(Q)

EX]= ) EX|Y=y]-P(Y=y)

YEY(Q)
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Important Discrete Prob. Distributions

Bernoulli Random Variable X : Q — {0, 1}
P(X=1)=p,P(X=0)=1-p, E[X] =p

Binomial Random Variable X ~ Bin(n, p)
n _
vk e€f{0,..,n}: P(X = k) = (k) pk(1—p)» %  E[X] =np

* measures number of ones in n independent biased coin flip

Geometric Random Variables X ~ Geom(p)

Vk>1: P(X =k) =p(1-—pk1 E[X] = >
* measures number independent biased coin flips are necessary
to get one “heads”
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