

Repetition Probability Theory Algorithm Theory

WS 2017/18

Fabian Kuhn

Randomized Algorithms

- An algorithm that uses (or can use) random coin flips in order to make decisions
- randomization can be a powerful tool to make algorithms faster or simpler

First: Short Repetition of Basic Probability Theory

- We need: basic discrete probability theory
 - probability spaces, probability events, independence, random variables, expectation, linearity of expectation, Markov inequality
- Literature, for example
 - your old probability theory book / lecture notes / ...
 - Appendix C of book of Cormen, Rivest, Leiserson, Stein
 - http://www.ti.inf.ethz.ch/ew/courses/APC15/material/ra.pdf

Probability Space and Events

FREBURG

Definition: A (discrete) **probability space** is a pair (Ω, \mathbb{P}) , where

 $\mathbb{P}: \Omega \to \mathbb{R}_{\geq 0}$ s.t. $\sum_{n=0}^{\infty} \mathbb{P}(\omega) = 1$

- Ω : (countable) set of elementary events
- \mathbb{P} : assigns a probability to each $\omega \in \Omega$

Definition: An **event** \mathcal{E} is a subset of Ω

- Event $\mathcal{E} \subseteq \Omega$: set of basic events
- Probability of *E*

 $\mathbb{P}(\mathcal{E}) \coloneqq \sum \mathbb{P}(\omega)$

Example: Probability Space, Events

FREI

Example: Probability Space, Events

flip (biased) coin
$$jH, T3$$

L prob. to get H is equal to p
experiment: flip coins until we get H
 $\mathcal{D} = \int_{1}^{2} H, TH, TTH, \dots, TTT \dots T3$
 $e_{o} e_{i} e_{2}$
 $\mathbb{P}(e_{i}) = (1-p)^{i} \cdot p$
 $\sum_{i=0}^{\infty} \mathbb{P}(e_{i}) = \gamma \cdot \sum_{i=0}^{\infty} (1-p)^{i} = p \cdot \frac{1}{p} = 1$
 $\mathcal{E} = je_{i} | i is even 3$
 $\mathbb{P}(\mathcal{E}) = \sum_{j=0}^{\infty} \mathbb{P}(e_{2j}) = p \cdot \sum_{j=0}^{\infty} (1-p)^{j} = p \cdot \frac{1}{1-(1-p)^{2}} = p \cdot \frac{1}{2p-p^{2}} = \frac{1}{2-p}$

Fabian Kuhn

UNI FREIBURG

Independent Events

Definition: Events $\mathcal{A} \subseteq \Omega$ and $\mathcal{B} \subseteq \Omega$ are **independent** iff $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})$ 5 **Example:** \mathcal{N} A and B disjoint roll 2 dice A: first die is even AnB B: second die is odd $AnB = \{(2,1), (2,3), (2,5), (4,1), (4,3), (4,5), (6,1), (6,3), (6,5)\}$ $|AnB| = 9 P(AnB) = \frac{9}{34} = \frac{1}{4}$

 $\mathcal{D} = \mathcal{D}_1 \times \mathcal{D}_2$

Algorithm Theory, WS 2017/18

Fabian Kuhn

Definition: A random variable X is a real-valued function on the elementary events Ω

 $X: \Omega \to \mathbb{R}$

- We usually write X instead of $X(\omega)$
- We also write

$$\mathbb{P}(X = x) = \mathbb{P}(\{\underline{\omega} \in \Omega : \underline{X(\omega)} = \underline{x}\})$$

Examples:

•
$$X^{top}: X^{top}(1) = 1, X^{top}(2) = 2, ..., X^{top}(6) = 6$$

- $X^{bot}: X^{bot}(1) = 6, X^{bot}(2) = 5, \dots, X^{bot}(6) = 1$
- Note that for all $\omega \in \Omega$, $X^{top}(\omega) + X^{bot}(\omega) = 7$
- To denote this, we write $X^{top} + X^{bot} = 7$

Indicator Random Variables

A random variable with only takes values 0 and 1 is called a **Bernoulli random variable** or an **indicator random variable**.

roll a dre, rand var.
$$Y = \begin{cases} 21 & \text{if even} \\ 0 & \text{otherwise} \end{cases}$$

$$Y(1) = 0, Y(2) = 1, Y(3) = 0, ...,$$

$$\mathbb{P}(Y=1) = \frac{1}{2}$$

Independent Random Variables

Definition: Two random variables X and Y are called **independent** if $\forall x, y \in \mathbb{R} : \mathbb{P}(X = x \land Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$ two coin flips (foir coin) Bornoulli rand. var X and Y X=1 <>> 1st coin flip is H Y = 1 @ exactly one coin Plip is H $P(X=0 \land Y=0) = P(ZTTS) = \frac{1}{4}$ $\mathbb{P}(X=0 \land Y=1) = \mathbb{P}(THS) = \frac{1}{4}$ $P(X=1 \land Y=0) = P(SHH3) = \frac{1}{4}$ $\mathbb{P}(X=I_{\Lambda}Y=I) = \mathbb{P}(J+TJ) = \frac{1}{4}$

Independent Random Variables

Definition: A collection of random variables $X_1, X_2, ..., X_n$ on a probability space Ω is called **mutually independent** if

$$\forall k \geq 2, 1 \leq i_1 < \cdots < i_k \leq n, \forall x_{i_1}, \dots, x_{i_k} \in \mathbb{R} :$$

$$\mathbb{P}(X_{i_1} = x_{i_1} \land \cdots \land X_{i_k} = x_{i_k}) = \mathbb{P}(X_{i_1} = x_{i_1}) \cdot \dots \cdot \mathbb{P}(X_{i_k} = x_{i_k})$$
not the same as pairwise independence
$$e_{\text{sample}} : 2 \text{ or in flips}$$

$$X_i = i \quad \implies 2^{-n} \text{ flip is H}$$

$$X_i = i \quad \implies 2^{-n} \text{ flip is H}$$

$$X_i = i \quad \implies 2^{-n} \text{ flip is H}$$

$$X_i = i \quad \implies 2^{-n} \text{ flip is H}$$

$$Y_i = i \quad \implies 2^{-n} \text{ flip is H}$$

$$Y_i = i \quad \implies 2^{-n} \text{ flip is H}$$

$$Y_i = i \quad \implies 2^{-n} \text{ flip is H}$$

Definition: The **expectation** of a random variable *X* is defined as

$$\mathbb{E}[\mathbf{X}] \coloneqq \sum_{\mathbf{x} \in \mathbf{X}(\Omega)} \mathbf{x} \cdot \mathbb{P}(\mathbf{X} = \mathbf{x}) = \sum_{\omega \in \Omega} \mathbf{X}(\omega) \cdot \mathbb{P}(\omega)$$

Example:

• recall: *X^{top}* is outcome of rolling a die

Expectation: Examples

Sums and Products of Random Variables

Linearity of Expectation:

For random variables X and Y and any $c \in \mathbb{R}$, we have

 $\mathbb{E}[cX] = c \cdot \mathbb{E}[X]$ $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

holds also if the random variables are not independent

Product of Random Variables:

For two **independent** random variables X and Y, we have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity of Expectation:

For random variables X and Y and any $c \in \mathbb{R}$, we have

 $\mathbb{E}[cX] = c \cdot \mathbb{E}[X], \qquad \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

Product of Random Variables:

For two **independent** random variables *X* and *Y*, we have

 $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity of Expectation: Example

Markov's Inequality

Lemma: Let X be a nonnegative random variable. Then for all c > 0 $\mathbb{P}(X \ge \underline{c} \cdot \mathbb{E}[X]) \le \frac{1}{c}$ $Var(X) := \mathbb{E}\left[\frac{(X - \mathbb{E}(X))^2}{230}\right] \quad \mathbb{P}\left(\frac{2}{23} \in \mathbb{E}[\frac{2}{2}]\right) \leq \frac{1}{2^2}$ Var(X) $\mathbb{P}((X - \mathbb{E}[X])^2 \ge c^2 \cdot \operatorname{Var}(X)) \le \frac{1}{c^2}$ $P(|X - E(X)| \neq C \cdot \sigma(X)) \leq \frac{1}{c^2}$ (Lebyshev's ineq. $\sigma(X) = Var(X)$

Conditional Probabilities

For events $\mathcal{A} \subseteq \Omega$ and $\mathcal{B} \subseteq \Omega$, the **conditional probability** of \mathcal{A} given \mathcal{B} is defined as

Conditioning on event \mathcal{B} defines a new probability space ($\mathfrak{B}, \mathbb{P}'$)

$$\forall \omega \in \Omega \setminus B : \mathbb{P}'(\omega) = \frac{\mathbb{P}(\omega)}{\mathbb{P}(B)}.$$

Two events are independent iff $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

$$P(A | B) = P(A)$$

56

41B

Law of Total Probability / Expectation

Lemma: Let *X* and *Y* be two random variables on the same probability space (Ω, \mathbb{P}) . We then have

$$\forall x \in \mathbb{R} : \mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} \mathbb{P}(X = x \mid Y = y) \cdot \mathbb{P}(Y = y).$$

$$\mathbb{E}[X] = \sum_{y \in Y(\Omega)} \mathbb{E}[X \mid Y = y] \cdot \mathbb{P}(Y = y)$$

$$1 := \sum_{x} \sqrt{n}(X = x \mid Y = y)$$

$$\mathbb{P}(A) = \mathbb{P}(A \mid Y = i) + \mathbb{P}(A \mid Y = 2) \cdot \mathbb{P}(Y = i)$$

$$+ \mathbb{P}(A \mid Y = 2) \cdot \mathbb{P}(Y = 2) + \cdots$$

Bernoulli Random Variable $X : \Omega \rightarrow \{0, 1\}$

$$\mathbb{P}(X=1) = p, \mathbb{P}(X=0) = 1 - p, \qquad \mathbb{E}[X] = p$$

Binomial Random Variable $X \sim Bin(n, p)$

$$\forall k \in \{0, \dots, n\}: \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, \qquad \mathbb{E}[X] = np$$

measures number of ones in n independent biased coin flip

Geometric Random Variables $X \sim \text{Geom}(p)$

$$\forall k \ge 1 : \mathbb{P}(X = k) = p(1 - p)^{k - 1}, \mathbb{E}[X] = \frac{1}{p}$$

 measures number independent biased coin flips are necessary to get one "heads"

Algorithm Theory, WS 2017/18

Fabian Kuhn

1