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Randomized Algorithms

Randomized Algorithms

• An algorithm that uses (or can use) random coin flips in order 
to make decisions

• randomization can be a powerful tool to make algorithms 
faster or simpler

First: Short Repetition of Basic Probability Theory

• We need: basic discrete probability theory
– probability spaces, probability events, independence, random 

variables, expectation, linearity of expectation, Markov inequality

• Literature, for example
– your old probability theory book / lecture notes / ...

– Appendix C of book of Cormen, Rivest, Leiserson, Stein

– http://www.ti.inf.ethz.ch/ew/courses/APC15/material/ra.pdf
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Probability Space and Events

Definition: A (discrete) probability space is a pair Ω,ℙ , where

• Ω: (countable) set of elementary events

• ℙ: assigns a probability to each 𝜔 ∈ Ω

ℙ ∶ Ω → ℝ≥0 s. t. 

𝜔∈Ω

ℙ 𝜔 = 1

Definition: An event 𝓔 is a subset of Ω

• Event ℰ ⊆ Ω: set of basic events

• Probability of ℰ

ℙ ℰ ≔ 

𝜔∈ℰ

ℙ 𝜔
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Example: Probability Space, Events
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Example: Probability Space, Events
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Independent Events

Definition: Events 𝒜 ⊆ Ω and ℬ ⊆ Ω are independent iff

ℙ 𝓐∩ 𝓑 = ℙ 𝓐 ⋅ ℙ 𝓑

Example:
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Random Variables

Definition: A random variable 𝑿 is a real-valued function on the 
elementary events Ω

𝑿 ∶ 𝛀 → ℝ

• We usually write 𝑋 instead of 𝑋 𝜔

• We also write
ℙ 𝑋 = 𝑥 = ℙ 𝜔 ∈ Ω ∶ 𝑋 𝜔 = 𝑥

Examples:

• 𝑿𝒕𝒐𝒑: 𝑋𝑡𝑜𝑝 1 = 1, 𝑋𝑡𝑜𝑝 2 = 2,… , 𝑋𝑡𝑜𝑝 6 = 6

• 𝑿𝒃𝒐𝒕: 𝑋𝑏𝑜𝑡 1 = 6, 𝑋𝑏𝑜𝑡 2 = 5,… , 𝑋𝑏𝑜𝑡 6 = 1

• Note that for all 𝜔 ∈ Ω, 𝑋𝑡𝑜𝑝 𝜔 + 𝑋𝑏𝑜𝑡 𝜔 = 7

• To denote this, we write 𝑋𝑡𝑜𝑝 + 𝑋𝑏𝑜𝑡 = 7
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Indicator Random Variables

A random variable with only takes values 0 and 1 is called a 
Bernoulli random variable or an indicator random variable.
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Independent Random Variables

Definition: Two random variables 𝑋 and 𝑌 are called independent if

∀𝒙, 𝒚 ∈ ℝ ∶ ℙ 𝑿 = 𝒙 ∧ 𝒀 = 𝒚 = ℙ 𝑿 = 𝒙 ⋅ ℙ(𝒀 = 𝒚)
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Independent Random Variables

Definition: A collection of andom variables 𝑋1, 𝑋2, … , 𝑋𝑛 on a 
probability space Ω is called mutually independent if

∀𝒌 ≥ 𝟐, 𝟏 ≤ 𝒊𝟏 < ⋯ < 𝒊𝒌 ≤ 𝒏, ∀𝒙𝒊𝟏 , … , 𝒙𝒊𝒌 ∈ ℝ ∶

ℙ 𝑿𝒊𝟏 = 𝒙𝒊𝟏 ∧ ⋯∧ 𝑿𝒊𝒌 = 𝒙𝒊𝒌 = ℙ 𝑿𝒊𝟏 = 𝒙𝒊𝟏 ⋅ … ⋅ ℙ(𝑿𝒊𝒌 = 𝒙𝒊𝒌)
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Expectation

Definition: The expectation of a random variable 𝑋 is defined as

𝔼 𝑿 ≔ 

𝒙∈𝑿 𝛀

𝒙 ⋅ ℙ 𝑿 = 𝒙 = 

𝜔∈Ω

𝑋 𝜔 ⋅ ℙ(𝜔)

Example:

• recall: 𝑋𝑡𝑜𝑝 is outcome of rolling a die
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Expectation: Examples
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Sums and Products of Random Variables

Linearity of Expectation:

For random variables 𝑋 and 𝑌 and any 𝑐 ∈ ℝ, we have

𝔼 𝒄𝑿 = 𝒄 ⋅ 𝔼 𝑿
𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]

• holds also if the random variables are not independent

Product of Random Variables:

For two independent random variables 𝑋 and 𝑌, we have

𝔼 𝑿 ⋅ 𝒀 = 𝔼 𝑿 ⋅ 𝔼[𝒀]
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Sums and Products of Random Variables

Linearity of Expectation:

For random variables 𝑋 and 𝑌 and any 𝑐 ∈ ℝ, we have

𝔼 𝒄𝑿 = 𝒄 ⋅ 𝔼 𝑿 , 𝔼 𝑿 + 𝒀 = 𝔼 𝑿 + 𝔼[𝒀]
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Sums and Products of Random Variables

Product of Random Variables:

For two independent random variables 𝑋 and 𝑌, we have

𝔼 𝑿 ⋅ 𝒀 = 𝔼 𝑿 ⋅ 𝔼[𝒀]
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Linearity of Expectation: Example

Sequence of coin flips: 𝐶1, 𝐶2, … ∈ 𝐻, 𝑇

• Stop as soon as the first 𝐻 turns up

Random variable 𝑿: number of 𝑇 before first 𝐻

Indicator random variable 𝑿𝒊 (𝒊 ≥ 𝟏):

• 𝑋𝑖 = 1: 𝑖𝑡ℎ coin flip happens and its outcome is 𝑇
𝑋𝑖 = 0: otherwise
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Markov’s Inequality

Lemma: Let 𝑋 be a nonnegative random variable.
Then for all 𝑐 > 0

ℙ 𝑋 ≥ 𝑐 ⋅ 𝔼 𝑋 ≤
1

𝑐
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Conditional Probabilities

For events 𝒜 ⊆ Ω and ℬ ⊆ Ω, the conditional probability of 𝒜
given ℬ is defined as

ℙ 𝓐 𝓑 ≔
ℙ 𝓐∩ 𝓑

ℙ 𝓑

Conditioning on event ℬ defines a new probability space Ω ∖ ℬ,ℙ′

∀𝜔 ∈ Ω ∖ 𝐵 ∶ ℙ′ 𝜔 =
ℙ 𝜔

ℙ ℬ
.

Two events are independent iff ℙ 𝓐 𝓑 = ℙ 𝓐
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Law of Total Probability / Expectation

Lemma: Let 𝑋 and 𝑌 be two random variables on the same 
probability space (Ω,ℙ). We then have

∀𝒙 ∈ ℝ ∶ ℙ 𝑿 = 𝒙 = 

𝒚∈𝒀 𝛀

ℙ 𝑿 = 𝒙 𝒀 = 𝒚) ⋅ ℙ(𝒀 = 𝒚) .

𝔼 𝑋 = 

𝑦∈Y(Ω)

𝔼 𝑋 𝑌 = 𝑦] ⋅ ℙ(𝑌 = 𝑦)
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Important Discrete Prob. Distributions

Bernoulli Random Variable 𝑿 ∶ 𝛀 → {𝟎, 𝟏}

ℙ 𝑋 = 1 = 𝑝,ℙ 𝑋 = 0 = 1 − 𝑝, 𝔼 𝑋 = 𝑝

Binomial Random Variable 𝑿 ∼ 𝐁𝐢𝐧(𝒏, 𝒑)

∀𝑘 ∈ 0,… , 𝑛 ∶ ℙ 𝑋 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘 , 𝔼 𝑋 = 𝑛𝑝

• measures number of ones in 𝑛 independent biased coin flip

Geometric Random Variables 𝑿 ∼ 𝐆𝐞𝐨𝐦(𝒑)

∀𝑘 ≥ 1 ∶ ℙ 𝑋 = 𝑘 = 𝑝 1 − 𝑝 𝑘−1, 𝔼 𝑋 =
1

𝑝

• measures number independent biased coin flips are necessary 
to get one “heads”


