
Algorithm Theory - Exercise Class
Exercise Lesson 3

Albert-Ludwigs-Universität Freiburg

Philipp Schneider
Algorithms and Complexity - Professor Dr. Fabian Kuhn



Organizational Matters

English Tutorial in Room 101-02-016/18.

Next exercise by Mohamad Ahmadi in English and in this room.

Email subject: AlgoTheo1718_[Sheet-Number]



Pseudocode: Standard Operating Procedure

Do not ’program’

Most of the time you don’t need...

... classes

... subprocedures for easy tasks (describe them instead)

... subprocedures replicating mathematical operations e.g.�
x∈Set

{ f (x)}
... brackets around forks, loops

Algorithm Theory �= Software Engineering

Concentrate on your strategy

Emphasis on the analysis of correctness and runtime

’Neglect’ implementation details, wherever possible

It’s perfectly fine to describe an algorithm with text



MIS vs maxIS

Let G = (V,E) be a graph.

V � ⊂V independent if for any nodes u,v ∈V � it holds that {u,v} /∈ E.

V � maximal independent (MIS) if V � is independent and there can no
node be added without violating independence.

V � maximum independent (maxIS) if V � is independent and |V �| is
maximum among all independent sets of G.



Greedy - MaxIS

Devise an efficient algorithm that computes a maximum independent set in a
rooted tree (for node v letC(v) := children of v in T ).

Algorithmus 1 : GreedyTreeMaxIS(v,T )
for u ∈C(v) do

GreedyTreeMaxIS(u,T )
if ∀u ∈C(v) : u /∈ S then

add v to S // S global





Dynamic Programming - MaxIS

Devise an efficient algorithm that that uses dynamic programming and
computes the size of a maximum independent set in a rooted tree.

s(v) = max

�
∑

u∈C(v)
s(u), 1+ ∑

u∈C(v)
∑

w∈C(u)
s(w)

�

Algorithmus 2 : TreeMaxIS(v)
if memo[v] �=⊥ then

return memo[v]

c ← ∑u∈C(v)TreeMaxIS(u)
g ← 1+∑u∈C(v) ∑w∈C(u)TreeMaxIS(w)

memo[v]← max{c,g}
return memo[v]



Exercise 1: Dynamic Programming - MaxIS

(a) Devise an efficient algorithm that uses the principle of dynamic
programming and finds a maximum independent set in a rooted tree.

Algorithmus 3 : TreeMaxIS(v)
if memo[v] �=⊥ then

return memo[v]

c ← ∑u∈C(v)TreeMaxIS(u)
g ← 1+∑u∈C(v) ∑w∈C(u)TreeMaxIS(w)

if g > c then
add v to maxIS

memo[v]← max{c,g}
return memo[v]



Exercise 1: Dynamic Programming - MaxIS

(b) Prove that your algorithm is correct, i.e. returns a maximum
independent set and prove that it has the claimed runtime.





Worst Case Analysis - Fibonacci Heaps

Show that in the worst case (a) the delete-min operation can require time
Ω(n) for an arbitrary n.



Worst Case Analysis - Fibonacci Heaps

Show that in the worst case (b) the decrease-key operation can require
time Ω(n) for an arbitrary n.





Amortized Analysis - Counting

We execute n increment operations on a binary number starting from 0.
Flipping the ith bit bi now has a cost 2i.
(a) Show that the amortized cost is super-constant (i.e. in ω(1)).



Amortized Analysis - Counting

We execute n increment operations on a binary number starting from 0.
Flipping the ith bit bi now has a cost 2i.
(b) Show that the amortized cost is O(logn).



Graph Algorithms: Max-Flow

Consider the Max-Flow Problem of a directed graph G = (V,E) with
capacities c : E → N0.
Instead of just one source and one sink, you are given k sources s1, . . . ,sk and
� sinks t1, . . . t�. The flow function f : E → N0 must satisfy the properties

Capacity constraints: f (e)≥ c(e), for all e ∈ E

Flow Conservation: ∑
e into v

f (e) = ∑
e out of v

f (e), for all v ∈V \{s1, . . . ,sk, t1, . . . , t�}

The value of a flow is

| f |=
k

∑
i=1

∑
e out of si

f (e) =
�

∑
j=1

∑
e into t j

f (e)

Show that you can reduce this problem in order to solve it with conventional
means (e.g. the algorithm of Ford-Fulkerson from the lecture).





Graph Algorithms: Max-Leaky-Flow

Consider the Max-Flow problem with one source s and one sink t, but each
node leaks an amount of 1 unit. This means that if c is flowing into v then
only max(0,c−1) is flowing out. The leaking flow is counted towards the
value of the flow, though. Can you reduce this problem as well?




