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Maximal Matching

Let G = (V,E) be a graph. Show that the algorithm computes a matching
M ⊆ E of size |M| ≥ 1

2 |M∗| of an optimal matching M∗.

Algorithmus 1 : Match(G)
M ← /0
for remaining e = {u,v} ∈ E do

M ← M∪{e}
E ← E \{e� | e� adjacent to u or v}

return M



Maximal Matching

Let G = (V,E) be a graph with edge weights w : E → N>0. Give a greedy
algorithm and show that it computes a matching M ⊆ E of size
w(M) = ∑e∈M w(e)≥ 1

2 w(M∗) of an optimal matching M∗.

Algorithmus 2 : MatchGreedy(G)
M ← /0
while E �= /0 do

e = {u,v}← heaviest edge in E
M ← M∪{e}
E ← E \{e� | e� adjacent to u or v}

return M



Maximal Matching



Perfect Matching

An r-regular graph is a graph where each node has the same degree r. Show
that any r-regular bipartite graph has a perfect matching.



Large Chromatic Number without Cliques

Want to show: For any k and l there is a graph G with χ(G)≥ k and no
cycle shorter than l.

A c-coloring of a graph G = (V,E) is an assignment φ : V →{1, . . . ,c} such
that for each {u,v} ∈ E, φ(u) �= φ(v).
The chromatic number χ(G) is the smallest c such that G has a c-coloring.
An independent set I ⊂V of G contains no nodes that are neighbors in G.
The independence number α(G) is the size of the largest ind. set of G.

(a) Show that χ(G)≥ |V (G)|
α(G)



Large Chromatic Number without Cliques

For any k and l there is a graph G with χ(G)≥ k and no cycle shorter than l.
“Roll the dice” to obtain a random graph and hope to get a good one.



Large Chromatic Number without Cliques

For any k and l there is a graph G with χ(G)≥ k and no cycle shorter than l.
“Roll the dice” to obtain a random graph and hope to get a good one.
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(b) Show that for a = � 3
p lnn� we have: P[α(G)≥ a]−→ 0 (n → ∞).



Large Chromatic Number without Cliques

For any k and l there is a graph G with χ(G)≥ k and no cycle shorter than l.
“Roll the dice” to obtain a random graph and hope to get a good one.
Let G = Gn,p with n nodes. Edge {u,v} exists with prob. p = n

1
2�−1=

2�√n
n .

(b) Show that for a = � 3
p lnn� we have: P[α(G)≥ a]−→ 0 (n → ∞).

P[α(G)≥ a] = P[∃W ⊆V,W independent set, |W | ≥ a]

= P[∃W ⊆V,W independent set, |W |= a]

≤ ∑
W⊆V,|W |=a

P[W is an independent set]

≤
�

n
a

�
(1− p)(

a
2)

≤ nae−pa(a−1)/2

≤ na

n
3
2 (a−1)

a≥2−→ 0 (n → ∞).



Large Chromatic Number without Cliques

Let p = n
1
2�−1=

2�√n
n and let X be the number of cycles of length at most �.

(c) For large n, show that E[X ] can be upper bounded by n
4 .
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Choose (v1, . . . ,v j). The probability these nodes form a cycle in exactly that
order is p j. The number of series of nodes of length j is at most n j.
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Let p = n
1
2�−1=

2�√n
n and let X be the number of cycles of length at most �.

(c) For large n, show that E[X ] can be upper bounded by n
4 .

Choose (v1, . . . ,v j). The probability these nodes form a cycle in exactly that
order is p j. The number of series of nodes of length j is at most n j.

E[X ]≤
�

∑
j=3

n j p j =
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∑
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n
1
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Let p = n
1
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(c) For large n, show that E[X ] can be upper bounded by n
4 .

Choose (v1, . . . ,v j). The probability these nodes form a cycle in exactly that
order is p j. The number of series of nodes of length j is at most n j.
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For large enough n, this is smaller than n
4 .



Large Chromatic Number without Cliques

From (b) and (c) we get P[X ≥ n/2 or α(G)≥ a]< 1.

=⇒ 1−P[X ≥ n/2 or α(G)≥ a]> 0

Probability that G has number of cycles with length less equal � is less than
n/2 and the independence number is smaller than a is not zero.

=⇒ Such a graph exists! Call it H.

H has a small independence number but it might contain some short cycles.

(d) Construct H � with no cycles of length ≤�, α(H �)<a and |V (H �)|≥n/2.

(e) Show that H � has chromatic number at least k.
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Large Chromatic Number without Cliques

From (b) and (c) we get P[X ≥ n/2 or α(G)≥ a]< 1.

=⇒ 1−P[X ≥ n/2 or α(G)≥ a]> 0

Probability that G has number of cycles with length less equal � is less than
n/2 and the independence number is smaller than a is not zero.

=⇒ Such a graph exists! Call it H.

H has a small independence number but it might contain some short cycles.

(d) Construct H � with no cycles of length ≤�, α(H �)<a and |V (H �)|≥n/2.

Remove a node from each cycle in H.

(e) Show that H � has chromatic number at least k.

χ(H �)≥ |V (H �)|
α(H �)

≥ n/2

3n1− 1
2� lnn

=
2�
√

n
6lnn

. (a = � 3
p lnn�, p = n

1
2�−1)

Choose n sufficiently large to obtain χ(H �)> k.



J. Ernovs’ Poison Darts

The paranoid super villain Doctor Meta wants to improve the security of his secret
laboratory to protect his ingenious research from trouble making secret agents. He
designed a mechanism that shoots poisonous darts at potential intruders and
instructed his forgetful chief chemist Joe Ernov to create a potent poison.
Unfortunately Mr. Ernov forgot to mix the two final chemicals A and B of the poison
and instead filled these directly into the darts. Now exactly p ·100% with p ∈ (0,1) of
the (many) darts contain chemical A while the rest contain chemical B and cannot be
distinguished. The liquids A and B are still poisonous when injected separately such
that the portion of A is less than p(1+ε) (0 < ε < 1), as poor Joe had to find out.
After the demise of your predecessor you became the new chief chemist and are
tasked to fix the problem. Your hunch is that if the victim is hit by sufficiently many
(d) randomly selected darts, then the ratio dA/d (dA is the number of darts filled with
A), should be below the effective threshold dA/d < p(1+ε).
Each dart is a guaranteed hit and delivers an equal amount of its chemical. Each dart
is filled with chemical A with uniform probability p and else with chemical B. Use as
few darts as possible such that the trap kills any intruding secret agents with high
probability (w.h.p.), i.e. with probability 1− 1

nc for a given constant c>0 and number
of darts n≥2. How many do you need? Of course Doctor Meta demands proof.



J. Ernovs’ Poison Darts

Determine number of darts d s.t. dA/d < p(1+ε) w.h.p. 1− 1
nc .



U. Borunds’ Faulty Sensors

Doctor Metas incompetent chief engineer Unir Borund designed n sensors to detect
possible intruders. It turns out that the sensor design is flawed and experiments show
that in a given time slot (round) of scanning a sensor fails to detect an intruder with
rather high probability 1

2 .
(a) Having heard of your work with poison darts, Mr. Borund asks you to help him

make his sensors more reliable by repeated rounds of scanning. He wants you to
prove that the probability of failure of a single sensor can be decreased to 1

nc for
given constant c>0 with as few rounds r as possible.



U. Borunds’ Faulty Sensors

Doctor Meta demands that an intruder is detected by all n sensors with probability at
least 1− 1

nc for given c>0. Metas chief engineer was tasked to devise a method that
still requires only r ∈O(logn) rounds of scanning, but failed.
(b) After the chief engineer demised in a tragic accident (that may or may not have

involved sharks), Doctor Meta approaches you to solve the problem.


