Exercise 1: Constructing Pushdown Automata

Consider the language \(L = \{a^m b^{2m} ba^n \mid m, n > 0\} \) over the alphabet \(\Sigma = \{a, b\} \).
Construct a PDA \(A \) with \(L(A) = L \).

Exercise 2: Understanding PDAs

Consider the PDA \(A = (\{q_0, q_1, q_2\}, \{a, b\}, \{\$, Z\}, q_0, \delta, \{q_2\}) \) with the following transition relation \(\delta \):
\[
\begin{align*}
(q_0, a, \$) &\rightarrow \{(ZZ\$, q_0)\} \\
(q_0, a, Z) &\rightarrow \{(ZZZ, q_0)\} \\
(q_0, b, Z) &\rightarrow \{\epsilon, q_1\} \\
(q_1, \epsilon, \$) &\rightarrow \{\epsilon, q_2\}
\end{align*}
\]
Remark: Assume that the stack contains the symbol \(\$ \) at the start.

1. Decide which of the words \(b, aabbbb \) and \(abbb \) are accepted by \(A \). Explain your answers by either giving an accepting sequence of configurations or by explaining why non sequence of configurations is accepting.

2. Which language is recognized by \(A \)?

Exercise 3: Context Free Grammar

Give a contextfree grammar for each of the following languages.

1. \(L_1 = \{a^k b^{2k} \mid k \geq 0\} \)
2. \(L_2 = \{a^i b^j \mid 0 < i \leq j\} \)
3. \(L_1 \cdot L_2 \)
4. \(L_1 \cup L_2 \)

Exercise 4: Chomsky Normal Form.

Convert the following grammar into Chomsky normal form along the procedure given in the lecture.
\[
S \rightarrow AB \mid A \mid B \\
A \rightarrow aAA \mid aA \mid a \\
B \rightarrow bBB \mid bB \mid b
\]
It is not sufficient to just state the final grammar without intermediate steps.
Which language is recognized by the grammar?