Theoretical Computer Science - Bridging Course Summer Term 2017 Exercise Sheet 4

Hand in (electronically or hard copy) by 12:15 pm, November 20th, 2017

Exercise 1: Constructing Pushdown Automata (6 Points)

Consider the language $L = \{a^n b^{2m} b a^n \mid m, n > 0\}$ over the alphabet $\Sigma = \{a, b\}$. Construct a PDA \mathcal{A} with $L(\mathcal{A}) = L$.

Exercise 2: Understanding PDAs

Consider the PDA $\mathcal{A} = (\{q_0, q_1, q_2\}, \{a, b\}, \{\$, Z\}, q_0, \delta, \{q_2\})$ with the following transition relation δ

 $(q_0, a, \$) \mapsto \{(ZZ\$, q_0)\}$ $(q_0, a, Z) \mapsto \{(ZZZ, q_0)\}$ $(q_0, b, Z) \mapsto \{(\epsilon, q_1)\}$ $(q_1, b, Z) \mapsto \{(\epsilon, q_1)\}$ $(q_1, \epsilon, \$) \mapsto \{(\epsilon, q_2)\}$

Remark: Assume that the stack contains the symbol \$ at the start.

- 1. Decide which of the words b, aabbbb and abbb are accepted by \mathcal{A} . Explain your answers by either giving an accepting sequence of configurations or by explaining why non sequence of configurations is accepting.
- 2. Which language is recognized by \mathcal{A} ?

Exercise 3: Context Free Grammar

Give a contextfree grammar for each of the following languages.

- 1. $L_1 = \{a^k b^{3k} | k \ge 0\}$
- 2. $L_2 = \{a^i b^j | 0 < i \le j\}$
- 3. $L_1 \cdot L_2$
- 4. $L_1 \cup L_2$

Exercise 4: Chomsky Normal Form.

Convert the following grammar into Chomsky normal form along the procedure given in the lecture.

$$S \rightarrow AB \mid A \mid B$$
$$A \rightarrow aAA \mid aA \mid a$$
$$B \rightarrow bBB \mid bB \mid b$$

It is **not** sufficient to just state the final grammar without intermediate steps. Which language is recognized by the grammar?

(4 Points)

(4 Points)

(6 Points)