Repetition of Course Material

Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2. Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f : \Sigma_1^* \to \Sigma_2^*$ exists, that can be calculated in polynomial time and

$$\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.$$

Language L is called \mathcal{NP}-hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

$$L \text{ \mathcal{NP}-hard } \iff \forall L' \in \mathcal{NP} : L' \leq_p L.$$

The reduction relation '\leq_p' is transitive ($L_1 \leq_p L_2$ and $L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3$). Therefore, in order to show that L is \mathcal{NP}-hard, it suffices to reduce a known \mathcal{NP}-hard problem \tilde{L} to L, i.e. $\tilde{L} \leq_p L$.

Finally a language is called \mathcal{NP}-complete (\iff) $L \in \mathcal{NPC}$, if

1. $L \in \mathcal{NP}$ and
2. L is \mathcal{NP}-hard.

Exercise 1: The class \mathcal{NPC}

This exercise is really (!!) important for the course.

A subset of the nodes of a graph G is a dominating set if every other node of G is adjacent to some node in the subset. Let

$$\text{DOMINATINGSET} = \{ (G,k) \mid \text{has a dominating set with } k \text{ nodes} \}.$$

Show that DOMINATINGSET is in \mathcal{NPC}. Use that

$$\text{VERTEXCOVER} := \{ (G,k) \mid \text{ Graph } G \text{ has a vertex cover of size at most } k \} \in \mathcal{NPC}.$$

Remark: A VERTEXCOVER is a subset $V' \subseteq V$ of nodes of $G = (V,E)$ such that every edge of G is adjacent to a node in the subset.

Exercise 2: P and NP?

Let $\text{CNF}_k = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable cnf-formula where each variable appears in at most } k \text{ places} \}$.

(a) Assume that $P \neq NP$ holds. Decide whether CNF_2 is in P or in $\mathcal{NP} \setminus P$. Prove your claim!

(b) Show that CNF_3 is \mathcal{NP}-complete.

Remark: You can gain 3 additional points in this exercise to pass the 50% barrier.
Exercise 3: Complexity Classes: Big Picture (2+3+2 Points)

(a) Why is \(P \subseteq NP \)?

(b) Show that \(P \cap NPC = \emptyset \) if \(P \neq NP \).

 Hint: Assume that there exists a \(L \in P \cap NPC \) and derive a contradiction to \(P \neq NP \).

(c) Give a Venn Diagram showing the sets \(P, NP, NPC \) for both cases \(P \neq NP \) and \(P = NP \).

 Remark: Use the results of (a) and (b) even if you did not succeed in proving those.