
Theoretical Computer
Science (Bridging Course)

Gian Diego Tipaldi

Regular Languages

Topics Covered

 Regular languages

 Deterministic finite automata

 Nondeterministic finite automata

 Closure

 Regular expressions

 Non-regular languages

 The pumping lemma

Finite Automata

 Supermarket door control

Finite Automata

 Supermarket door control

Front
Pad

Rear
Pad

Finite Automata

 Supermarket door control

Open Closed

Rear
Both

Neither

Rear
Both
Front

Front

Neither

Finite Automata

 Supermarket door control

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

 Supermarket door control

 Probabilistic counterparts exists

 Markov chains

 Bayesian networks

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

 Supermarket door control

 Probabilistic counterparts exists

 Markov chains

 Bayesian networks

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

Finite Automata

 States:

 Alphabet:

 Transition function: See edges

 Start state:

 Final states:

Finite Automata

Which kind of input is accepted?

 “aaaabbbbaaaa” ?

 “000000” ?

 An empty string?

 “1000111” ?

Finite Automata

Which language is accepted?

 “aaaabbbbaaaa” ?

 “000000” ?

 An empty string?

 “1000111” ?

Finite Automata

Which language is accepted?

 “M recognizes A”

 “A is the language L(M)”

Finite Automata – Example

 Which language recognizes M?

q2 q1

0 1
1

0

Finite Automata – Example

 And in this case?

q2 q1

0 1
1

0

Finite Automata – Example

 What about this one?

Finite Automata – Example

Finite Automata – Example

  Sums all numerical
symbols that reads,
modulo 3.

 Resets the count,
every time it
receives <RESET>.

 Accepts, if the sum
is a multiple of 3.

Definition of Computation



Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

q2 q1

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

2. Design transitions

q2 q1

0 0 1

1

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

2. Design transitions

3. Design start state and accept states

q2 q1

0 0 1

1

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

q

1 0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

q0 q

1 0

1

0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

3. We have a 00

q0 q

1 0

1

q00

0

1 0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

3. We have a 00

4. We have a 001

q0 q

1 0

1

q00

0 0,1

1 0
q001

Regular Operations

Let A and B be languages, we have:

 Union:

 Concatenation:

 Star:

 Example







Closure of Regular Languages



Proof by Construction



Proof by Construction



Example

 L(M1) = {w|w contains a 1}

 L(M2) = {w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

Example

 L(M1) = {w|w contains a 1}

 L(M2) = {w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

q2
p3

Example

 L(M1) = {w|w contains a 1}

 L(M2) = {w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

0 q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

q2
p3

0

1 1 1

0

0,1
0 0

1 1

Example

 L(M1) = {w|w contains a 1}

 L(M2) = {w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

0 q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

0

1 1 1

0

0,1
0 0

1 1

q2
p3

Closure of Regular Languages



Closure of Regular Languages



Non deterministic
finite automata

Nondeterministic Automata

 Deterministic (DFA)

 One successor state

 𝜀 transitions not allowed

 Nondeterministic (NFA)

 Several successor states possible

 𝜀 transitions possible

q2 q1 q3 q4

0,1
0,1

1 0,ε
1

Nondeterministic Computation

Example Run

q1

q1

q3 q2 q1

q3 q1

q2 q1 q3 q4

q4

q4

q2 q1 q3

q3 q1

q4

q4

0

0

1

1

0

1

q2 q1 q3 q4

0,1
0,1

1 0,ε 1

Input: w = 010110

NFA 𝑁1

Which language is accepted?

Nondeterministic Automata



Nondeterministic Automata



Definition of computation



A NFA has an equivalent DFA

NFA recognizing
language 𝐴

DFA recognizing
language 𝐴

Equivalence NFA and DFA

Theorem 1.39:

Every nondeterministic finite automaton
has an equivalent deterministic finite
automaton.

Corollary 1.40:

A language is regular if and only if some
nondeterministic finite automaton
recognizes it.

Proof: Theorem 1.39



Proof: Theorem 1.39



Proof: Theorem 1.39



Proof: Theorem 1.39 (ctd.)



Example

 Consider the following NFA

 What is the corresponding DFA?

Example

 Resulting DFA for the example before

Example

 Simplified DFA for the example before

Closure of Regular Operations



Closure of Regular Operations

 Regular languages are closed under
the union operation

Proof



Closure of Regular Operations

 Regular languages are closed under
the concatenation operation

Proof



Closure of Regular Operations

 Regular languages are closed under
the star operation

Proof



Regular Expressions



Regular Expressions – Examples



Regular Expressions – Examples



Applications of Regular
Expressions

 Design of compilers

 Search for strings (awk, grep, …)

 Programming languages

 Bioinformatics (repetitive patterns)

Equivalence of RE and NFA

Theorem 1.54 (page 66):

A language is regular if and only if some
regular expression describes it.

Equivalence of RE and NFA

Theorem 1.54 (page 66):

A language is regular if and only if some
regular expression describes it.

Two directions to consider

RE <-> NFA

Equivalence of RE and NFA

Lemma 1.55 (page 67):

If a language is described by some
regular expression, then it is regular.

Lemma 1.60 (page 69):

If a language is regular, then it can be
described by some regular expression.

Proof RE -> NFA



Proof RE -> NFA: Case 1



a

Proof RE -> NFA: Cases 2 & 3



Proof RE -> NFA: Case 4, 5 & 6



Example

Let consider the expression (ab U a)*

 Convert the expression into a NFA

 Start from the smallest subexpression

 Include the other subexpressions

 Note: The states might be redundant!

Example: (ab U a)*

 a

 b

 ab

 ab U a

 (ab U a)*

a

b

a b ε

a b ε

a

ε

ε

a b ε

a

ε

ε

ε

ε

ε

Exercise: (ab U a)*

 Let’s do it together!

Exercise: (a U b)*aba

a

b

ε

ε

ε

a b ε a ε a b ε a ε ε

ε

ε

Proof NFA -> RE

Lemma 1.60 (page 69):

If a language is regular, then it can be
described by a regular expression.

Two steps:

 Convert DFA into GNFA

 Convert GNFA into regular expression

Generalized NFA

 Labels are regular expressions

 States connected in both directions

 Start state only exit transitions

 Accept state only incoming transitions

 Only one accept state

Generalized NFA

qstart

qaccept

b

ab

Ø

b*

ab*

ab∪ba a*

(aa)*

aa

Generalized NFA



Generalized NFA



Proof DFA -> GNFA

 Add a new start state

 Connect it with 𝜀 transitions

 Add a new accept state

 Connect it with 𝜀 transitions

 Replace multiple labels with unions

 Add transitions with ∅ when not present
in the original DFA

Proof DFA -> GNFA

 DFA  GNFA

Convert GNFA into RE

3 state DFA 5 state GNFA 4 state GNFA

2 state GNFA 3 state GNFA
Regular

Expression

Convert GNFA into RE



Ripping of States

Replace one state with the
corresponding regular expression

q2 q1

q2

qrip

q1

R4

R1

R2

R3

(R1)(R2)* (R3) ∪ R4

Example: From DFA to GNFA

Example: Rip State 2

Example: Rip State 1

Another Example

1 2
a

a

3

b

b a

b

s

1 2
a

a

3

b

b a

b

ε

a

ε

ε

s

2

3

a

ε

ε

a

aa ∪b

ab

b

ba ∪a

bb

Rip 1: Rip 2:

GNFA: DFA:

s

3

a
a(aa ∪b)*

a(aa ∪b)*ab ∪b (ba ∪a) (aa ∪b)* ∪ε

(ba ∪a) (aa ∪b)*ab ∪ bb

s a

Rip 3:
(a(aa ∪b)*ab ∪b)((ba ∪a) (aa ∪b)*ab ∪ bb)*((ba ∪a) (aa ∪b)* ∪ε) ∪a(aa ∪b)*

Equivalence Proof



Equivalence Proof



Equivalence Proof



q2 q1

q2

qrip

q1

R4

R1

R2

R3

(R1)(R2)* (R3) ∪ R4

Nonregular Languages

 Finite automata have finite memory

 Are the following language regular?

 How can we prove it mathematically?

{0 1 | 0}

{ | h a s a n e q u a l n u m b e r o f 0 s a n d 1 s }

{ | h a s a n e q u a l n u m b e r o f o c c u re n c e s o f 0 1 a n d 1 0 }

n n
B n

C w w

D w w

 





The Pumping Lemma



Proof Idea

 Let M be a DFA recognizing A

 Let p be the numbers of states in M

 Show that s can be broken into xyz

 Prove the conditions holds

Proof Idea

 Let M be a DFA recognizing A

 Let p be the numbers of states in M

 Show that s can be broken into xyz

 Prove the conditions holds

Proof Idea

 Let M be a DFA recognizing A

 Let p be the numbers of states in M

 Show that s can be broken into xyz

 Prove the conditions holds

Proof of the Pumping Lemma



Use of the Pumping Lemma



Nonregular Languages



Nonregular Languages



Nonregular Languages



Nonregular Languages



Example Exam Question



Summary

 Deterministic finite automata

 Regular languages

 Nondeterministic finite automata

 Closure operations

 Regular expressions

 Nonregular languages

 The pumping lemma

