Theoretical Computer
Science (Bridging Course)

Regular Languages

Gian Diego Tipaldi

UNI

FREIBURG

Topics Covered

= Reqgular languages

= Deterministic finite automata

= Nondeterministic finite automata
= Closure

= Regular expressions

= Non-regular languages

= The pumping lemma

Finite Automata

= Supermarket door control

Finite Automata

= Supermarket door control

Finite Automata

= Supermarket door control

Rear Rear
BOth Front m Both
Neither () Front

~ _—

Neither

Finite Automata

= Supermarket door control

Closed Closed Open Closed Closed
Open Closed Open Open Open

Finite Automata

= Supermarket door control

Closed Closed Open Closed Closed
Open Closed Open Open Open

= Probabilistic counterparts exists
= Markov chains
= Bayesian networks

Finite Automata

= Supermarket door control

Closed Closed Open Closed Closed
Open Closed Open Open Open

= Propadjlistic counterparts exjsts
= Markov chal
= Bayesign-Aetworks

Finite Automata

A finite automaton M is a 5-tuple
M — (QJZJ 5;(10:}?)

where,
1. Q is a finite set called the states

2. X 1s a finite set called the
alphabet

3. 6:0Q0 XX - Q is the transition
function

qo € Q is the start state

5. F € Q is the set of accept states
(also called final states)

N

Finite Automata

| |
O O -0

= States: Q@ ={q,4, e}

= Alphabet: ¥ ={0,1}

= Transition function: See edges
= Start state: «

= Final states: F = {¢}

Finite Automata

0

N |
(o) @ =

Which kind of input is accepted?
= “aaaabbbbaaaa” ?

= *000000" ?

= An empty string?

= *1000111" ?

Finite Automata

0

N |
(o) @ =

Which language is accepted?
= “aaaabbbbaaaa” ?

= *000000" ?

= An empty string?

= "1000111" ?

Finite Automata

Which language is accepted?

A = {w | w contains at least one 1 and an even

number of Os follows the last 1}

= "M recognizes A"
= "Ais the language L(M)"

Finite Automata — Example

= Which language recognizes M?
() ()
1

(=
~ _—

0

Finite Automata — Example

= And in this case?
() . ()
1

O
~ _—

0

Finite Automata — Example

= What about this one?

Finite Automata — Example

<RESET=>

Finite Automata — Example

= Sums all numerical
symbols that reads,
modulo 3.

= Resets the count,
every time it
receives <RESET>.

= Accepts, if the sum
is @ multiple of 3.

<RESET>

Definition of Computation

» Let M be a finite automaton M = (Q, %, 8, qo, F)
» Let w = w; ...w,, be a string over X
» M accepts w if a sequence of states ry, ... 1;, exists in Q such that

1. 19 =qo
2. 6(ry,wijyq) =ryforalli=0,..,n—-1
3. 1, EF
» M recognizes language A if A = {w | M accepts w}

DEFINITION 1.16:

A language is called regular language if some finite
automaton recognizes it.

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states
2. Design transitions

o) 1 (o

(&)
“~

1

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states
2. Design transitions
3. Design start state and accept states

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

4@/\

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string
2. We have a O

10 /0\4
0
086

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string
2. We have a O
3. We have a 00

() o o()
0 1
080

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string
2. We have a O

3. We have a 00

4. We have a 001

() o of 3 (s
R 0, _1,
080

Regular Operations

Let A and B be languages, we have:

= Union: AuB={z|x€ Aor z e B}

= Concatenation: AoB={xy|xc Aandy c B}
= Star: A*={x125...2,, | n>0and x; € A}

= Example A= {empty, full}; B = {cup, glass}
= AU B?
= Ao B?
" A*?

Closure of Regular Languages

A set S is closed under an operation o if applying o on
elements of S yields elements of S.

« example: multiplication on natural numbers
 counterexample: division of natural numbers

Theorem 1.25:

The class of regular languages is closed under the union

operation.
(In other words: If A; and A, are regular languages, so is

A UA,.)

Proof by Construction

Let M; recognize A; where M; = (Q4,Z%, 61,91, F;), and
M, recognize A, where M; = (Q,,%, 65,95, F5).

Construct M to recognize A; U A,, where M = (Q, %, 8, qo, F).

1. Q ={(r,r,)| 1 € Qandr, € Q3}.
This set is the cartesian product of the sets Q; and Q, (written
Q1 X Q). It is the set of all pairs of states with the first from @, and

the second from Q,.

2. I, thealphabet, is the same as in case of M; and M,. The theorem
remains true if they have different alphabets, £; and X,. We would
then modify the prooftolet X = X; U X,.

Proof by Construction

3. 6, the transistion function, is defined as follows.
For each (r,7,) € Q and eacha € %, let

6((r1,), a) = (6,(ry,a),8,(ry,a)).
Hence 6 gets a state of M (which actually is a pair of states from M,
and M,), together with an input symbol, and returns M's next state.
qo is the pair (g4, q2).

5. F is the set of pairs, in which at leadt one member is an accept state of
either M; or M,. We can write this as

F={(r,nr)|r, €Forr, €F}
This expression is the sameas F = (F; X Q) U (Q X F,).

(Note: itis not the same as F = F; X F,. Whatwould that give us?)
_

N

Example

= | (M1) = {w]|w contains a 1}
= | (M2) = {w|w contains at least two 0Os}

om o1ﬂ m1 m
GO e

Example

= | (M1) = {w]|w contains a 1}
= | (M2) = {w|w contains at least two 0Os}

om o1ﬂ m1 m
GO e

Example

= | (M1) = {w]|w contains a 1}
= | (M2) = {w|w contains at least two 0Os}

om o1ﬂ m1 m
Wi H.%%

NOENGatr
1O 1U

Example

= | (M1) = {w]|w contains a 1}
= | (M2) = {w|w contains at least two 0Os}

om o1ﬂ m1 m
Wi H.%%

MO RO OBl

vl

v1
0~0:>m

1O 1O

Closure of Regular Languages

Theorem 1.26:

The class of regular languages is closed under the
concatenation operation.
(In other words: If A; and A, are regular languages, so is A; © 4,.)

Closure of Regular Languages

Theorem 1.26:

The class of regular languages is closed under the
concatenation operation.
(In other words: If A; and A, are regular languages, so is A; © 4,.)

Non deterministic
finite automata

Nondeterministic Automata

= Deterministic (DFA)

= One successor state
= ¢ transitions not allowed

= Nondeterministic (NFA)

= Several successor states possible
= ¢ transitions possible

0,1
o,lm m
° | i 1 ‘

Nondeterministic Computation

Deterministic Nondeterministic
computation computation

f),\
'
e R

)

* accept or reject * accept

o kT & & &k
. L | [] []

Example Run

o)

5
R CICRrC

Input: w = 010110

NFA N,

Which language is accepted?

Nondeterministic Automata

DEFINITION 1.37:

A nondeterministic finite automaton is a 5-tuple
(Q! Z; 5; qo; F) With:

1. Q afinite set of states

2. X afinite set, the alphabet

3. 6:Q X Z, - P(Q) is the transition function
4. qq € Q is the start state

5. F € (@ is the set of accept states

Y. includes ¢

P(Q) the powerset of Q

Nondeterministic Automata

DEFINITION 1.37:

A nondeterministic finite automaton is a 5-tuple
(Q! Z; 5; qo; F) With:

1. Q afinite set of states

2. X afinite set, the alphabet

3. 6:Q X Z, - P(Q) is the transition function
4. qo € Qgthe start state

5. F € (@ is the set of accept states

Y. includes ¢

P(Q) the powerset of Q

Definition of computation

Let M be a finite automaton (Q, %, §, qo, F).
Let w = w; ...w,, be a string over X.

M accepts w if a sequence of states ry, ..., 13, exists in Q such that
]. T'O —_ qO

2. 6(T5,Wi+1) =T foralli = 0,...,n— 1

3. m€eEF

M recognizes language A if A = {w | M accepts w}.

A language is regular if some finite automaton recognizes it.

A NFA has an equivalent DFA

\0,1
1 0,1 0.1 NFA recognizing
AR " — @ language A

DFA recognizing
language A

Equivalence NFA and DFA

Theorem 1.39:

Every nondeterministic finite automaton
has an equivalent deterministic finite

automaton.

Corollary 1.40:

A language is regular if and only if some
nondeterministic finite automaton

recognizes It.

Proof: Theorem 1.39

Let N = (Q,Z%, 8y, q9, F) be the NFA recognizing some
language A.

Idea: We show how to construct a DFA M recognizing A for
any such NFA.

We start by only considering the easier case first, wherein N
has no ¢ transitions. The ¢ transitions are taken into
account later.

Proof: Theorem 1.39

Construct M = (Q', %, 84,90, F').

1. Q" =P(Q).
Every state of M is a set of states of N.
(Recall that P(Q) is the power set of Q).

2. ForR € Q' anda € X let
' (R,a) ={q€Q|qed(r a)forsomer € R}.
If R is a state of M, it is also a set of states of N. When M reads a
symbol a in state R, it tells us where a takes each state in R.
Because each state leads to a set of states, we take the union of all
these sets. Alternatively we can write:

0'(R,a) = U 5(r,a)
TER
3. qy = {qo}- M starts in the state corresponding to the collection
containing just the start state of N.

Proof: Theorem 1.39

4. F'={R € Q'| R contains an accept state of N}.
The machine M accepts if one of the possible states that N could be
in at any given moment in an accept state.

The ¢ transitions need some extra notation:

a) For any state R of M we define E(R) to be the collection of states
that can be reached from R by means of any number of &
transitions alone, including the members of R themselves.
Formally, for R € Q let

E(R) ={q | q can be reached from R along 0 or more ¢ transitions}.

b) The transition function M is then modified to take into account all
states that can be reached by going along ¢ transitions after every
step. Replacing 6 (r, a) by E(6(r, a)) achieves this. Thus,

5'"(R,a)={q€eQ|qe E((S(r, a)) for somer € R}.

Proof: Theorem 1.39 (ctd.)

c) Finally, the start state of M has to cater for all possible states that
can be reached from the start state of N along the ¢ transitions.
Changing g, to be E({q,}) achieves this effect.

We have now completed the construction of the DFA M that simulates
the NFA N.

Example

= Consider the following NFA

= What is the corresponding DFA?

Example

= Resulting DFA for the example before

Example

= Simplified DFA for the example before

Closure of Regular Operations

Theorem 1.45:

The class of regular languages is closed under the union operation. In
other words, if A; and A, are regular languages, sois A; U A,.

Theorem 1.47:

The class of regular languages is closed under the concatenation
operation.

Theorem 1.49:
The class of regular languages is closed under the star operation.

Closure of Regular Operations

= Regular languages are closed under
the union operation

N 7 N

"[Co Og
OO© 6 08©
“Ga | Po
o O o O
Oo@ > O

Proof

Let N; = (Q,%, 64,94, F;) recognize A, and
N, = (Q2,%, 6;,9,, F;) recognize A,.

Construct N = (Q, %, 6, qy, F) to recognize A; U A, as follows:

1. Q =1{qo}V Q.U Q,.The states of N are all the states of N; and N,,
with the addition of the new start state q,.

The state g, is the start state of N.

The accept states F = F; U F,. The accept states are all the accept
states of N; and N,. That way N accepts if either N, or N, accepts.

4. Define § so thatforanyq € Q and anya € X,

(61(q,a) q € Qq
5(6[,61) qEQZ
5(g,a) =< .2
@OV 410} q=goanda=¢

) q=qoanda * ¢

Closure of Regular Operations

= Regular languages are closed under
the concatenation operation

Nl ' N2

o © ©
- O () oo
O O @ o o @

Proof

Let N; = (Q,%, 64,94, F;) recognize A, and
N, = (0Q,,%,98,,q,, F,) recognize A,.
Construct N = (Q, %, 6, q4, F,) to recognize A, o A, as follows:
1. Q = QU Q,.The states of N are all the states of N; and N,,.

2. The state g, is the start state of N, which is the same as the start
state of N;.

3. The accept states F, are the same as the accept states of N,.

4. Define § so thatforanyq € Q and anya € X,

(61(q,a) qEQandq &€ F;
6,(q,a) q€EF,anda # ¢

§1(qa) U{q} q€Fianda=c¢

\ 62(611 a) q € QZ

5(q,a) = A

Closure of Regular Operations

= Regular languages are closed under
the star operation

v ©\ -z €
O : : - ©
—’O] © ‘ C g

_ y _ °©

Proof

Let Ny = (Q4,%, 61,94, F;) recognize A;.
Construct N = (Q, %, §, q, F) to recognize Aj as follows:

1. Q =1{qo}V Q1.

The states of N are the states of N; plus a new start state q,.

I

The state q, is the new start state of N.

3. F ={q,} U F;. The accept states are the old accept states plus the

new start state.

4. Define § so thatforany g € Q and anya € X,,

5(q,a) = <

(6,(q,a) q€E€EQiandq & F;

§.(q,a) q€EF, anda # ¢
61(qa) U{q:} q€Fianda=¢
41} q=¢qgoanda = ¢
. 0 q=¢qoand a # ¢

Regular Expressions

DEFINITION 1.52:
Say that R is a regular expression if R is
a for some a in the alphabet X,

&,

?,

(R;{ UR,), where R, and R, are regular expressions,
(R{ o R,), where R, and R, are regular expressions, or
(R}), where R, is a regular expression.

S I N I

Regular Expressions — Examples

LetX ={0,1}:

010" = {w | w has exactly a single 1}.

X*12* = {w | w has at least one 1}.

2*001X* = {w | w contains 001 as a substring}.

(017)* ={w | every O inwis followed by at least one 1}.
XX)* ={w |wis astring of even length}.

(2XX)" = {w |thelengthof wis a multiple of three}.
01U 10 = {01,10).

020U 1¥*1u0uUl =

{w | w starts and with the same symbol as it ends}.

X NS RN NN

Regular Expressions — Examples

LetX ={0,1}:

9 (0Uueg)l*=01"U1".
The expression 0 U € describes the language {0, £}, so the
concatenation operation adds either 0 or € before every string

in 1%,
10. 0V &)1 Ue) ={0,1,01}.
11. 170 = Q.

Concatenating the empty set to any set yields the empty set.
12. 9* = {e}.

The star operation puts together any number of strings from
the language to get a string in result. If the language is empty,
the star operator can only put 0 strings together, giving only
the empty string.

Applications of Regular
Expressions

= Design of compilers

= Search for strings (awk, grep, ...)

= Programming languages

= Bioinformatics (repetitive patterns)

Equivalence of RE and NFA

Theorem 1.54 (page 66):

A language is regular if and only if some
regular expression describes it.

Equivalence of RE and NFA

Theorem 1.54 (page 66):

A language is regular if and only if some
regular expression describes it.

Two directions to consider
RE <-> NFA

Equivalence of RE and NFA

Lemma 1.55 (page 67):

If a language is described by some
regular expression, then it is regular.

Lemma 1.60 (page 69):

If a language is reqular, then it can be
described by some regular expression.

Proof RE -> NFA

» Idea: Given a regular expression R describing a regular
language A. We show how to convert R into an NFA
recognizing A.

» Six cases have to be considered:

1. R =aforsomea € X, then L(R) = {a}.

2. R =¢g,then L(R) = {&}.

3. R=0,thenL(R) = ©.
4. R=R,UR,.

5 R=RyoR,.

6.

R = R!.

Proof RE -> NFA: Case 1

Given: R = a for some a € X, then L(R) = {a}

The NFA N = ({91, 92}, %, 6, 41,192})

recognizes L(R) with: 5

1. 6(q1,0) = {g2), and —()2(0)
2. 6(r,b) =0,forr # g, or b # a.

Note: this machine fits the definition of an NFA, but not
that of a DFA, as not all input symbols have exiting arrows.

Proof RE -> NFA: Cases 2 & 3

Given: R = ¢, then L(R) = {&}.
The NFAN = ({q1},%,6,91,{q91})
recognizes L(R) with: . @
1. 5(r,b) = @, forany r and b.

Given: R = @, then L(R) = Q.

The NFAN = ({q},%,6,q,0) @

recognizes L(R) with:
1. 5(r,b) = @, forany r and b.

Proof RE -> NFA: Case 4,5 & 6

Given:

4. R = R{ UR,.
5. R=R{°R,.
6. R =Rj.

The proofs for Theorems 1.45, 1.47, and 1.49 (slide 35,
~closure of regular lanugages®) can be used to construct the
NFA R from the NFAs for R; and R, (or just R, in case 6).

u

Example

Let consider the expression (ab U a)*

= Convert the expression into a NFA

= Start from the smallest subexpression

= Include the other subexpressions

= Note: The states might be redundant!

Exercise: (ab U a)*

= | et’s do it together!

Exercise: (a U b)*aba

[e0ra
_0elFOTON,

Q@Q
2 0200205020

Proof NFA -> RE

Lemma 1.60 (page 69):

If a language is reqular, then it can be
described by a regular expression.

Two steps:
= Convert DFA into GNFA

= Convert GNFA into regular expression

Generalized NFA

= | abels are regular expressions

= States connected in both directions

= Start state only exit transitions

= Accept state only incoming transitions

= Only one accept state

Generalized NFA

a/b*\ | Jaa
(O

o)
< f/y » abuba
J

ab

Generalized NFA

A generalized nondeterministic finite automaton is a

5'tuple (Q: 2,0, Astart, Qaccept): where:

1. Q afinite set of states

2. X afinite set, the alphabet

3. 0:(Q \{qaccept}) X (Q\{qstare}) = R is the transition
function

4. qstart € Q 1s the start state

5. Qaccept € Q 1s the accept state

R represents the collection of all regular expressions over
the alphabet X.

Generalized NFA

A GNFA accepts string w € L* if w = wy;w, ... w;,, where each

w; € ¥* and a sequence of states g, g4, ..., g exists such that

1. qo = qstare 1S the start state,

2. qx = qaccept 18 the accept state, and

3. for each i, we have w; € L(R;), where R; = 6(q;_1,q;); in
other words, R; is the expression on the arrow from q;_

to q;.

Proof DFA -> GNFA

= Add a new start state

= Connect it with ¢ transitions

= Add a new accept state

= Connect it with ¢ transitions

= Replace multiple labels with unions

= Add transitions with @ when not present
in the original DFA

Proof DFA -> GNFA

= DFA

N

b

h

= GNFA

OO0

Convert GNFA into RE

3 state DFA 5 state GNFA |=»]4 state GNFA
<] 2 state GNFA |J<«=| 3 state GNFA

Regular
Expression

Convert GNFA into RE

Let k be the number of states of G.

2. If k = 2, then G must consists of a start state, an accept state, and a
single transition connecting them, which is labeled with a regular
expression R. Return the expression R and exit.

3. Ifk > 2, we select any state q,,, € Q different from q,,+ and
Qaccept and let G' ne the GNFA (Q', %, ', qstares Gaccept), where

Q' = Q\{Qrip}'
and fOI‘ any q; € Q’\{Qaccept} and any Qj € Q,\{CIStart} let
8'(qi,9;) = (RD(RR)*(R3) U (Ry),
forR, = 5(%‘) Qrip)' R, = 5(Qrip: Qrip)' R; = S(Qrip: CIj)' and
Ry, =46(q;,q))-
4. Compute Convert(G") and return this value.

Ripping of States

Replace one state with the
corresponding regular expression

R4

TN
@ (R)(R)* (R3) UR, =
R,()

Example: From DFA to GNFA

Example: Rip State 2

Example: Rip State 1

Another Example

B /kmb GNFA: aCab
5 I

aa Ub
Rip 1: R Rip 2:

a(aa Ub)* ‘
a
> ba Ua a(aa Ub)*ab UR /:)'a va) (aa Ub)* ue

bb
U (ba ua) (aa ub)*ab U bb Q

R_E) 3@ (a(aa ub)*ab ub)((ba uva) (aa ub)*ab u bb)*((ba ua) (aa ub)* ue) ua(aa ub)* ‘®
\a

Equivalence Proof

Claim 1.65: For any GNFA G, Convert(G) is equivalentto G.

Procedure: We proof this claim by induction on k, the number of states
of the GNFA.

Basis: Prove the claim true for k = 2 states. If G has only two states, it
can have only a single transition, which goes from the start state to the
accept state. The regular expression label on this transition describes
all the strings that allow G to get to the accept state. Hence, this
expression is equivalent to G.

Induction step: Assume that the claim is true for k — 1 states and use
this assumption to prove that the claim is true for k states. First we
show that G and G’ recognize the same language. Suppose that ¢
accepts an input w. Then in an accepting branch of the computation ¢
enters a sequence of states

Astart» 91, 92,93, > Qaccepl“

Equivalence Proof

start» 91, 92,93 -+ Qaccepir
If none of them is the removed state gq,;,, clearly G' also accepts w,
because each of the new regular expressions labeling the transitions of
G' contains the old regular expression as part of a union.
If q,-4, does appear, removing each run of consecutive q,;,, states forms
an accepting computation for G'. The states q; and q; bracketing a run

have a new regular expression on the transition between them that
describes all strings taking g; to q; via q,;;, on G. So G’ accepts w.

For the other direction, suppose that G’ accepts an input w. As each
transition between any two states q; and q; in G’ describes the

collection of strings taking q; and g; in G, either directly or via q,;,, G
must also accept w. Thus, G and G’ are equivalent.

Equivalence Proof

The induction hypothesis states that when the algorithm calls itself
recursively on input G’, the result is a regular expression that is
equivalent to G’, because G’ has k — 1 states. Hence this regular
expression also is equivalent to G, and the algorithm is proved correct.

. . @ (R1)(Ry)* (R3) UR, ;

Nonregular Languages

= Finite automata have finite memory
= Are the following language regular?

B={0"1"|n=>0}
C ={w |w has an equal number of 0s and 1s}

D ={w |w has an equal number of occurences of 01 and 10}

= How can we prove it mathematically?

The Pumping Lemma

If A is a regular language, then there is a number p (the
pumping length), such that any string s of length at least p
may be divided into three pieces, s = xyz, such that

1. foreachi >0, xy'z € 4,
2. |yl > 0, and
3. |xy| < p.

Note: from 2 follows that y # ¢.

Proof Idea

= Let M be a DFA recognizing A

= et p be the numbers of states in M
= Show that s can be broken into xyz
= Prove the conditions holds

Proof Idea

= Let M be a DFA recognizing A

= et p be the numbers of states in M
= Show that s can be broken into xyz
= Prove the conditions holds

= : 9 8 S
FTPT IR0 Ty

g1 93 o0 @9 v @9 e T35 413

Proof Idea

= Let M be a DFA recognizing A

= et p be the numbers of states in M
= Show that s can be broken into xyz
= Prove the conditions holds

M h

Y

Proof of the Pumping Lemma

Let M = (Q,%,3,q, F) be a DFA recognizing A and |Q| = p.

Lets = s;s, ...s, beastringin A, with |s| = n,andn>p

Let r = ry, ..., 1,41 be the sequence of states that M enters for s,
SOTiyy = O(r;,s)withl1<i<n.|ry,..,mmiq|=n+1,n+1>2p+1.

Among the first p + 1 elements in r, there must be a r;and a r, being the
same state q,,, with j # [.

As r;occurs in the first p + 1 states: [<p + 1.
Letx = s1..85_1,¥ = s;...511and z = 5;..5,:
* as x takes M from r, to r;, y from r; to r, and z from r; to ry, 1.4, being an
accept state, M must accept xy'z fori > 0.
* with j=1[|y| >0
* with [<p+1,|xy|<p

Use of the Pumping Lemma

Use pumping lemma to prove that a language A is not
regular:

1. Assume that A is regular (Proof by contradiction)

2. usethe lemma to guarantee the existence of p, such that
strings of length p or greater can be pumped

3. find string s of A, with |s| > p that cannot be pumped

4. demonstrate that s cannot be pumped using all
different ways of dividing s into x,y, and z (using
condition 3 is here very useful)

5. the existence of s contradicts the assumption, therefore
A is not a regular language

Nonregular Languages

B ={0"1"|n >0}
» Choose string s = 0717 for p € N* being the pumping length
> If we were to consider condition 2, then we would have that:

1. string y consists only of 0s 2 xyyz has more 0s than 1s 2 not a
member of B = violates condition 1 = contradiction!

2. string y consists only of 1s = similar argument as in case 1 >
contradiction!

3. string y consists of both 0s and 1s = xyyz may have same
number of 0s and 1s, but out of order with some 1s before
0s = contradiction!

Intuitive argument: A DFA M would need to be able to remember how
many 0s have been seen so far as it reads the input. As the number of
0s isn’t limited and all DFAs only have a finite number of states, B
cannot be recognized by a DFA. Thus, the language B is not regular.

Nonregular Languages

C = {w | w has an equal number of Os and 1s}
» Choose string s = 0717 for p € N* being the pumping length
» Pumping s seems possible, but only if we ignored condition 3!
» Condition3: |xy| < p

» Thus, y consists of 0s only
» Then xyyz & C - Contradiction!

Alternative proof:
» We know that B = {0"1" | n > 0} is not regular.

» If C were regular, then C N 0*1* = B also regular, because
regular languages are closed under intersection (cp. slide 14)!
—> Contradiction!

Nonregular Languages

F={ww|we{0,1}"}
» Choose string s = 0P0P for p € N* being the pumping length
» Does NOT WORK, because it CAN be pumped! Try again..
» Choose string s = 071071 for p € N* being the pumping
length
» We use condition 3 again:
» Condition3: |xy| < p

» Thus, y consists of 0s only
» Then xyyz ¢ F - Contradiction!

» Choice of s is crucial
» If some s does not work, try another one!

Nonregular Languages

E={0'1|i>j}
> Choose string s = 0P*11? for p € N* being the pumping length
» We use condition 3 again:
» Condition3: |xy| < p

» Thus, y consists of 0s only
> Then xy°z = xz ¢ E - Contradiction!

> Here we use xy°z instead of xyyz as argument. This is
commonly called ,pumping down*.

Example Exam Question

Q: Use the pumping lemma to prove that

A:

L={0kV|k,j = 0and k > 2j}is not regular.
Assume that L = {0“1/ | k,j = 0 and k = 2j} is regular. Let p be the
pumping length of L. The pumping lemma states that for any string s € L of

at least length p, there exist strings x, y, and z such that s = xyz, |xy| <
p,|y| > 0,and foralli > 0: xy’z € L.

Choose s = 0717, Because s € L and |s| = 3p > p, we obtain from the
pumping lemma the strings x, y, and z with the above properties. As
s = xyz, |xy| < p, and s begins with 2p zeros, one can see that xy can only

consist of zeros. If we pump s down, i.e. select i = 0, the string xy°z = xz =
02r-1vl1p,

As xz has p ones, and |y| > 0, xz has fewer than 2p zeros.
Hence xz ¢ L = CONTRADICTION.
Therefore L is not regular!

Summary

= Deterministic finite automata

= Reqgular languages

= Nondeterministic finite automata
= Closure operations

= Regular expressions

= Nonregular languages

= The pumping lemma

