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Topics Covered 

 Regular languages 

 Deterministic finite automata 

 Nondeterministic finite automata 

 Closure 

 Regular expressions 

 Non-regular languages 

 The pumping lemma 



Finite Automata 

 Supermarket door control 
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 Probabilistic counterparts exists 

 Markov chains 

 Bayesian networks 
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 States:  

 Alphabet:  

 Transition function: See edges 

 Start state:  

 Final states: 

 



Finite Automata 

 

 

 

 

Which kind of input is accepted? 

 “aaaabbbbaaaa” ? 

 “000000” ? 

 An empty string? 

 “1000111” ? 
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Which language is accepted? 

 “aaaabbbbaaaa” ? 

 “000000” ? 

 An empty string? 

 “1000111” ? 

 



Finite Automata 

 

 

 

 

Which language is accepted? 

 

 

 “M recognizes A” 

 “A is the language L(M)” 

 



Finite Automata – Example  

 Which language recognizes M? 

q2 q1 
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1 
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Finite Automata – Example  

 And in this case? 

q2 q1 
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1 
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Finite Automata – Example  

 What about this one? 



Finite Automata – Example  

 



Finite Automata – Example  

  Sums all numerical 
symbols that reads, 
modulo 3. 

 Resets the count, 
every time it 
receives <RESET>. 

 Accepts, if the sum 
is a multiple of 3. 

 



Definition of Computation 

 




Designing Finite Automata 

We want to accept binary strings with 
an odd number of 1s 
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Designing Finite Automata 

We want to accept binary strings with 
an odd number of 1s 

1. Design states 

2. Design transitions 

3. Design start state and accept states 

q2 q1 

0 0 1 

1 



Designing Finite Automata 

We want to accept binary strings 
containing 001 as substring 
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Designing Finite Automata 

We want to accept binary strings 
containing 001 as substring 

1. No symbols of the string 

2. We have a 0 

3. We have a 00 

4. We have a 001 

q0 q 

1 0 

1 

q00 

0 0,1 

1 0 
q001 



Regular Operations 

Let A and B be languages, we have: 

 Union: 

 Concatenation: 

 Star: 

 

 Example 

   

   

   



Closure of Regular Languages 
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Proof by Construction 
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Example 

 L(M1) = {w|w contains a 1} 

 L(M2) = {w|w contains at least two 0s} 
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Example 

 L(M1) = {w|w contains a 1} 

 L(M2) = {w|w contains at least two 0s} 
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Closure of Regular Languages 
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Closure of Regular Languages 
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Non deterministic  
finite automata 



Nondeterministic Automata 

 Deterministic (DFA) 

 One successor state 

 𝜀 transitions not allowed 

 Nondeterministic (NFA) 

 Several successor states possible 

 𝜀 transitions possible 

 

q2 q1 q3 q4 

0,1 
0,1 

1 0,ε 
1 



Nondeterministic Computation 

 



Example Run 

 
q1 

q1 

q3 q2 q1 

q3 q1 

q2 q1 q3 q4 

q4 

q4 

q2 q1 q3 

q3 q1 

q4 

q4 

0 

0 

1 

1 

0 

1 

q2 q1 q3 q4 

0,1 
0,1 

1 0,ε 1 

Input: w = 010110 

NFA 𝑁1 



Which language is accepted? 

 



Nondeterministic Automata 

 
   



Nondeterministic Automata 
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Definition of computation 
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A NFA has an equivalent DFA 

NFA recognizing 
language 𝐴 

DFA recognizing 
language 𝐴 



Equivalence NFA and DFA 

Theorem 1.39: 

Every nondeterministic finite automaton 
has an equivalent deterministic finite 
automaton. 

 

Corollary 1.40: 

A language is regular if and only if some 
nondeterministic finite automaton 
recognizes it. 



Proof: Theorem 1.39 
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Proof: Theorem 1.39  
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Proof: Theorem 1.39 
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Proof: Theorem 1.39 (ctd.) 

 




Example 

 Consider the following NFA 

 

 

 

 

 
 

 

 What is the corresponding DFA? 

 



Example 

 Resulting DFA for the example before 



Example 

 Simplified DFA for the example before 



Closure of Regular Operations 
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Closure of Regular Operations 

 Regular languages are closed under 
the union operation 



Proof 

 




Closure of Regular Operations 

 Regular languages are closed under 
the concatenation operation 



Proof 
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Closure of Regular Operations 

 Regular languages are closed under 
the star operation 



Proof 

 




Regular Expressions 
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Regular Expressions – Examples  
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Regular Expressions – Examples  
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Applications of Regular 
Expressions 

 Design of compilers 

 Search for strings (awk, grep, …) 

 Programming languages 

 Bioinformatics (repetitive patterns) 



Equivalence of RE and NFA 

 

Theorem 1.54 (page 66): 

A language is regular if and only if some 
regular expression describes it. 

 

 

 



Equivalence of RE and NFA 

 

Theorem 1.54 (page 66): 

A language is regular if and only if some 
regular expression describes it. 

 

Two directions to consider 

RE  <-> NFA 

 

 



Equivalence of RE and NFA 

 

Lemma 1.55 (page 67):  

If a language is described by some 
regular expression, then it is regular. 

 

Lemma 1.60 (page 69): 

If a language is regular, then it can be 
described by some regular expression. 

 



Proof RE -> NFA 

 




Proof RE -> NFA: Case 1 

 


a 



Proof RE -> NFA: Cases 2 & 3 

 




Proof RE -> NFA: Case 4, 5 & 6 

 




Example 

Let consider the expression (ab U a)* 

 

 Convert the expression into a NFA 

 Start from the smallest subexpression 

 Include the other subexpressions 

 

 Note: The states might be redundant! 



Example: (ab U a)* 

 a 

 b 

 ab 

 

 ab U a 
 

 

 (ab U a)* 
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Exercise: (ab U a)*  

 Let’s do it together! 



Exercise: (a U b)*aba 

 

a 

b 

ε 

ε 

ε 

a b ε a ε a b ε a ε ε 

ε 

ε 



Proof NFA -> RE 

Lemma 1.60 (page 69):  

If a language is regular, then it can be 
described by a regular expression. 

 

Two steps: 

 Convert DFA into GNFA 

 Convert GNFA into regular expression 

 



Generalized NFA 

 Labels are regular expressions 

 States connected in both directions 

 Start state only exit transitions 

 Accept state only incoming transitions 

 Only one accept state 



Generalized NFA 

 

qstart 

qaccept 

b 

ab 

Ø 

b* 

ab* 

ab∪ba a* 

(aa)* 

aa 



Generalized NFA 
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Generalized NFA 
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Proof DFA -> GNFA 

 Add a new start state 

 Connect it with 𝜀 transitions 

 Add a new accept state 

 Connect it with 𝜀 transitions 

 Replace multiple labels with unions 

 Add transitions with ∅ when not present 
in the original DFA  



Proof DFA -> GNFA 

 DFA  GNFA 



Convert GNFA into RE 

 

3 state DFA 5 state GNFA 4 state GNFA 

2 state GNFA 3 state GNFA 
Regular 

Expression 



Convert GNFA into RE 
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Ripping of States 

Replace one state with the 
corresponding regular expression 

q2 q1 

q2 

qrip 

q1 

R4 

R1 

R2 

R3 

(R1)(R2)* (R3) ∪ R4 



Example: From DFA to GNFA 

 



Example: Rip State 2 

 



Example: Rip State 1 

 



Another Example 

 

1 2 
a 

a 

3 
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ε 
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ε 

ε 

a 
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ab 

b 
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bb 

Rip 1: Rip 2: 

GNFA: DFA: 

s 

3 

a 
a(aa ∪b)* 

a(aa ∪b)*ab ∪b (ba ∪a) (aa ∪b)* ∪ε 

(ba ∪a) (aa ∪b)*ab ∪ bb 

s a 

Rip 3: 
(a(aa ∪b)*ab ∪b)((ba ∪a) (aa ∪b)*ab ∪ bb)*((ba ∪a) (aa ∪b)* ∪ε) ∪a(aa ∪b)* 



Equivalence Proof 
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Equivalence Proof 

 


q2 q1 

q2 

qrip 

q1 
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R1 

R2 

R3 

(R1)(R2)* (R3) ∪ R4 



Nonregular Languages 

 Finite automata have finite memory 

 Are the following language regular? 

 

 

 

 

 How can we prove it mathematically? 

 

{0 1 | 0}

{ |  h a s  a n  e q u a l n u m b e r  o f  0 s  a n d  1 s }

{ | h a s  a n  e q u a l n u m b e r  o f  o c c u re n c e s  o f  0 1  a n d  1 0 }

n n
B n

C w w

D w w

 







The Pumping Lemma 

 




Proof Idea 

 Let M be a DFA recognizing A 

 Let p be the numbers of states in M 

 Show that s can be broken into xyz 

 Prove the conditions holds 
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Proof Idea 

 Let M be a DFA recognizing A 

 Let p be the numbers of states in M 

 Show that s can be broken into xyz 

 Prove the conditions holds 

 



Proof of the Pumping Lemma 

 




Use of the Pumping Lemma 
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Nonregular Languages 
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Nonregular Languages 
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Example Exam Question 

 




Summary 

 Deterministic finite automata 

 Regular languages 

 Nondeterministic finite automata 

 Closure operations 

 Regular expressions 

 Nonregular languages 

 The pumping lemma 


