Exercise 1: Constructing DFAs

Construct DFAs that recognize the following languages. Drawing the state diagrams is sufficient. The alphabet is $\Sigma = \{0, 1\}$.

(a) $L_1 = \{w \mid |w| \geq 2 \text{ and } w \text{ contains an odd number of ones}\}$.
(b) $L_2 = \{w \mid w \text{ contains an even number of zeros}\}$.
(c) $L_3 = \{w \mid w \text{ every zero is immediately followed by a one}\}$.
(d) $L_4 = \{w \mid w \text{ ends with 01}\}$.

Sample Solution

1.

![Diagram](image1)

2.

![Diagram](image2)

3.

![Diagram](image3)
Exercise 2: Kleene Star

(4 Points)

For two languages \(L \) and \(K \) we define

\[L \cdot K := \{ww' \mid w \in L, w' \in K\}. \]

Use counter examples to show that none of the following equalities is valid for general languages \(K \) and \(L \).

1. \(K \cdot L = L \cdot K \)
2. \((K \cdot K)^* = K^* \)
3. \(K^* \cdot K = K^* \)
4. \((LK)^* = (L \cup K)^* \)

Sample Solution

1. \(K = \{1\} \) and \(L = \{0\} \), then \(\{10\} = K \cdot L \neq L \cdot K = \{01\} \).
2. Let \(K = \{1\} \), then \(\{1^n \mid n \text{ is even}\} = (K \cdot K)^* \neq K^* = \{1^n \mid n \in \mathbb{N}\} \).
3. Let \(K = \{1\} \). Then \(\epsilon \in K^* \) but \(\epsilon \notin K^* \cdot K \)
4. Let \(K = \{1\} \) and \(L = \{0\} \), then all word in \((LK)^*\) have even length but the words in \((L \cup K)^*\) do not have to have even length, e.g., \(1 \in (L \cup K)^* \) but \(1 \notin (LK)^* \).

There are many examples in which the languages \(L \) and \(K \) contain more than one word!
Exercise 3: From NFA to DFA \hfill (1+2+2 Points)

Consider the following NFA.

(a) Give a formal description of the NFA by giving the alphabet, state set, transition function, start state and the set of accept states.

(b) Construct a DFA which is equivalent to the above NFA by drawing the corresponding state diagram.

(c) Explain which language the automaton accepts.

Sample Solution

(a) The set of states is $Q = \{q_0, q_1, q_2\}$; the alphabet $\Sigma = \{a, b\}$; the starting state is q_0; the set of accept states is $F = \{q_2\}$; the transition function is shown in the following table.

<table>
<thead>
<tr>
<th></th>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${q_1}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>b</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0}$</td>
</tr>
</tbody>
</table>

(b) After performing the algorithm from the lecture we obtain the following DFA. All transitions which are not in the picture go to the garbage state \emptyset.

(c) The recognized language contains words of length at least two. Furthermore any a is immediately followed by a b. The number of b's after the last a must not be two.

Exercise 4: Union of regular Languages \hfill (3 Points)

Let L_1, L_2 be regular languages. Show that $L_1 \cup L_2$ is also regular without (explicitly!) using the proof which was presented in the lecture.
Sample Solution

As L_1 and L_2 are regular there are DFAs A_1 and A_2 with $L(A_1) = L_1$ and $L(A_2) = L_2$. Let q_1 and q_2 be the starting states of A_1 and A_2 respectively.

Now, we construct an ϵ-NFA A which consists of an additional start state q and the two DFAs A_1 and A_2. Besides all transitions from A_1 and A_2 we introduce two ϵ transitions: One from q to q_1 and one from q to q_2. The set of accepting states is the union of the accepting states of A_1 and A_2.

The constructed ϵ-NFA accepts a word if and only if it is accepted by A_1 or A_2, i.e., $L(A) = L(A_1) \cup L(A_2)$.

The algorithm of the lecture can be used to transfer A into a DFA; hence we have a DFA which accepts the language $L(A_1) \cup L(A_2)$, i.e., the language is regular.