Theoretical Computer Science - Bridging Course
Summer Term 2017
Exercise Sheet 4

Hand in (electronically or hard copy) by 12:15 pm, November 20th, 2017

Exercise 1: Constructing Pushdown Automata

Consider the language \(L = \{a^n b^{2m} ba^n | m, n > 0 \} \) over the alphabet \(\Sigma = \{a, b\} \).
Construct a PDA \(A \) with \(L(A) = L \).

Sample Solution

The formal definition of the automaton is implicitly given.

Exercise 2: Understanding PDAs

Consider the PDA \(A = (\{q_0, q_1, q_2\}, \{a, b\}, \{$, Z\}, q_0, \delta, \{q_2\}) \) with the following transition relation \(\delta \)

\[
\begin{align*}
(q_0, a, \$) &\rightarrow \{(ZZ\$, q_0)\} \\
(q_0, b, Z) &\rightarrow \{(\epsilon, q_1)\} \\
(q_1, \epsilon, \$) &\rightarrow \{(\epsilon, q_2)\} \\
(q_0, a, Z) &\rightarrow \{(ZZZ, q_0)\} \\
(q_1, b, Z) &\rightarrow \{(\epsilon, q_1)\}
\end{align*}
\]

Remark: Assume that the stack contains the symbol \(\$ \) at the start.

1. Decide which of the words \(b, aabbb \) and \(abb \) are accepted by \(A \). Explain your answers by either giving an accepting sequence of configurations or by explaining why non sequence of configurations is accepting.
2. Which language is recognized by \(A \)?
Sample Solution

The automaton looks as follows.

1. It is clear that the word b cannot be accepted as a b is only processed by the automaton if the top of the stack contains a Z and the stack can only contain a Z if an a has been read.

The word $aabbba$ is accepted by the language by the following sequence of configurations.

$$
(aabbba, q_0, \$) \rightarrow (abbb, q_0, ZZZ) \rightarrow (bbaa, q_0, ZZZZ) \rightarrow (bb, q_1, ZZZZ) \\
\rightarrow (b, q_1, ZZZ) \rightarrow (b, q_1, Z) \rightarrow (b, q_1, \$) \rightarrow (b, q_2, \$)
$$

The word $abbb$ is not accepted by the automaton. The only deterministicly occurring sequence of configurations when reading the word is

$$
(abbb, q_0, \$) \rightarrow (bbaa, q_0, ZZZZ) \rightarrow (bb, q_1, ZZZ) \rightarrow (b, q_1, \$) \rightarrow (b, q_1, \$).
$$

In this last configuration there is no transition which can be executed and the state q_1 is not accepting.

2. The automaton recognizes the language $\{a^n b^{2n} \mid n \geq 1\}$

Exercise 3: Context Free Grammar

Give a contextfree grammar for each of the following languages.

1. $L_1 = \{a^k b^{3k} \mid k \geq 0\}$
2. $L_2 = \{a^i b^j \mid 0 < i \leq j\}$
3. $L_1 \cdot L_2$
4. $L_1 \cup L_2$

Sample Solution

S_1, S_2, T_1 and T_2 are the respective start symbols. The rest of the formal definition of the grammars is given implicitly.

1.

$$S_1 \rightarrow aS_1 bbb \mid \epsilon$$

2.

$$S_2 \rightarrow aRb$$

$$R \rightarrow aRb \mid B$$

$$B \rightarrow Bb \mid b \mid \epsilon$$
Exercise 4: Chomsky Normal Form. \((4 \text{ Points}) \)

Convert the following grammar into Chomsky normal form along the procedure given in the lecture.

\[
S \rightarrow AB \mid A \mid B \\
A \rightarrow aAA \mid aA \mid a \\
B \rightarrow bBB \mid bB \mid b
\]

It is not sufficient to just state the final grammar without intermediate steps.

Which language is recognized by the grammar?

Sample Solution

The grammar recognized the language which corresponds to \(L(a^*b^*) \setminus \{e\} \).

Remove rules of the form \(S \rightarrow B \) according to the lecture and obtain.

\[
S \rightarrow AB \mid aAA \mid aA \mid bBB \mid bB \mid b \\
A \rightarrow aAA \mid aA \mid a \\
B \rightarrow bBB \mid bB \mid b
\]

Transform according to step four in the lecture:

\[
S \rightarrow AB \mid aAA \mid aA \mid bBB \mid bB \mid b \\
A \rightarrow aT_1 \mid aA \mid a \\
B \rightarrow bT_2 \mid bB \mid b \\
T_1 \rightarrow AA \\
T_2 \rightarrow BB
\]

Substitute terminal symbols \((a \text{ and } b) \) with new non-terminals \((U_a \text{ and } U_b) \) in terms of length two:

\[
S \rightarrow AB \mid U_aT_1 \mid U_aA \mid a \mid U_bT_2 \mid U_bB \mid b \\
A \rightarrow U_aT_1 \mid U_aA \mid a \\
B \rightarrow U_bT_2 \mid U_bB \mid b \\
T_1 \rightarrow AA \\
T_2 \rightarrow BB \\
U_a \rightarrow a \\
U_b \rightarrow b.
\]