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Exercise 1: Packaging Marbles (4+4 Points)

We are given n marbles and have access to an (arbitrary) supply of packages. We are also given an
array A[1..n], where entry A[i] equals the value of a package containing exactly i marbles. Our profit
is the total value of all packages containing at least one marble, minus the cost of packaging, which is
i for a package containing i marbles. We want to maximize our profit.

(a) Give an efficient algorithm that uses the principle of dynamic programming to package marbles
for a maximum profit.

(b) Argue why your algorithm is correct. Give a tight (asymptotic) upper bound for the running time
of your algorithm and prove that it is an upper bound for your solution.

Exercise 2: Breaking Eggs1 (1+5+5+5 Points)

Imagine a building with n floors. Additionally, we are given a supply of k eggs. For some reason we
need to find out at which floor eggs start breaking when dropped from a window on that floor.

Suppose that dropping an egg from a certain floor always produces the same result, regardless of which
egg is used and any other conditions. Initially, we do not have any knowledge at which height eggs
might break. If an egg does not break, then it does not take any harm and can be fully reused.

When eggs break when dropped from a floor, they also break when dropped from higher floors. When
eggs survive being dropped from a floor, they survive being dropped from lower floors. We call the
floor from which dropped eggs break but survive at all floors beneath, the critical floor. The goal is
to find the critical floor with minimal number of attempts (number of times eggs are being dropped).

(a) Suppose we have only one egg. Give a strategy to always find the critical floor, if it exists.

(b) For n� k, describe a strategy that finds the critical floor with O
(
k k
√
n
)

attempts, if it exists.

(c) We want some advance knowledge before starting to drop eggs. For inputs n and k, we want to
compute the exact number of attempts a(n, k) which an optimal strategy requires in the worst
case, until it finds the critical floor if it exists. Give an algorithm that uses the principle of dynamic
programming to compute a(n, k) in O(kn2) time.

(d) Argue the correctness of your algorithm and its running time.

1This question has been asked in some of Google’s job-interviews.



Exercise 3: Binary Counter (3+4 Points)

If we use a counter in standard binary representation, then an arbitrary series of increment and
decrement operations can incur relatively high cost in terms of number of bits that need to be
flipped. E.g. decrementing and incrementing the number 2k in binary representation repeatedly in an
alternating fashion incurs Θ(k) bit flips for each operation.

We introduce a more efficient data structure, where the counter is represented by two binary numbers
P and N , and the current state of the counter is P−N . The counter is initialized with P = N = 0.
The increment and decrement operations are implemented as follows.

Algorithm 1 increment(P,N)

i← 0
while Pi = 1 do . Pi is the ith bit of P .

Pi ← 0
i← i+ 1

if Ni = 1 then Ni ← 0
else Pi ← 1

Algorithm 2 decrement(P,N)

i← 0
while Ni = 1 do . Ni is the ith bit of N .

Ni ← 0
i← i+ 1

if Pi = 1 then Pi ← 0
elseNi ← 1

(a) Let P = 100110 and N = 001000. Give the state of P,N (in binary representation) and P −N (in
decimal representation) after each of the following operations: increment, increment, increment,
increment, decrement, decrement.

(b) Use the accounting method to show that any series of increment and decrement operations on
a counter initialized with P = N = 0 has amortized costs of O(1) (number of bits flipped) per
operation.

Exercise 4: Dynamic Array (2+7 Points)

In the lecture we saw a dynamically growing array that implements the append operation in amortized
O(1) (reads/writes). For an array of size N that is already full, the append operation allocates a new
array of size 2N (β = 2) before inserting an element at the first free array entry.

Additionally, we introduce another operation remove which writes Null into the last non-empty entry
of the dynamic array. However, by appending many elements and subsequently removing most of
them, the ratio of unused space can become arbitrarily high. Therefore, when the dynamic array of
size N contains N

4 or less elements after remove, we copy each element into a new array of size N
2 .

(a) Given an array of size N which has at least N
2 elements, show that any series of remove operations

has an amortized cost of O(1) (reads/writes) per operation.

(b) Use the potential function method to show that any series of append and remove operations has
amortized cost of O(1) (reads/writes) per operation. Assume that the number of elements n in
the array is initially 0 and assume that the array never shrinks below its initial size N0 (we stop
allocating smaller arrays in that case).

Remarks: You may assume that N is always a power of two. You may also assume that allocating an
empty array is free, only copying elements costs one read and one write for each copied element. If
you do part (b) absolutely correctly you automatically receive all points for part (a).


