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Exercise 1: Contention Resolution (2+2+4 Points)

Consider the contention resolution problem explained in the lecture with n processes and a single
shared resource. We would like to calculate the expected number of time slots until every process has
been successful at least once. For all integers i ≤ n, let random variable Ti denote the smallest integer
such that exactly i different processes are successful to access the resource in the first Ti time slots.

(a) Let t be an arbitrary time slot in [Tj + 1, Tj+1] for an arbitrary integer j < n. What is the
probability that some process becomes successful for the first time in time slot t?

(b) For all i ≤ n, let random variable Xi be the number of rounds needed for the ith process to
succeed after exactly i− 1 distinct processes have succeeded, i.e., Xi := Ti − Ti−1. Then, for an
arbitrary integer j ≤ n, what is the expected value of Xj?

(c) What is the expected value of Tn, the time for all processes to succeed at least once?

Hint: The probability that some process is successful in a given time slot is (1 − 1/n)n−1. We have
seen that this probability is approximately 1/e. For simplicity, you can assume that this probability is
exactly 1/e.

Exercise 2: Randomized Independent Set Algorithm (6+7 Points)

Let G = (V,E) be a graph with n vertices and m edges. An independent set in a graph G is a subset S ⊆
V of the nodes such that no two nodes in S are connected by an edge. Let d := 1

n

∑
v∈V deg(v) = 2m

n be
the average node degree and consider the following randomized algorithm to compute an independent
set S.

(I) Start with an empty set S. Then independently add each node of V with probability 1/d to S
(you can assume that d ≥ 1).

(II) The subgraph induced by S might still contain some edges and we therefore need to remove at
least one of the nodes of each of the remaining edges. For this, we use the following deterministic
strategy: As long as S is not an independent set, pick an arbitrary node u ∈ S which has a
neighbor in S and remove u from S.

It is clear that the above algorithm computes an independent set S of G.

(a) Find a (best possible) lower bound on the expected size of S at the end of the algorithm. Your
lower bound should be expressed as a function of n and d.

Hint: First compute the expected numbers of nodes in S and edges in G[S] after Step (I) of the
algorithm.



(b) Assume that the above algorithm has running time T (n) and that it computes an independent set
of size at least n

5d with probability at least 1
2 .

Show how to compute an independent set of size at least n
5d with probability 1− 1

n . What is the
running time of your algorithm?

Exercise 3: Randomized Partial 3-Coloring (7 Points)

The maximum 3-coloring problem asks for assigning one of the colors {1, 2, 3} to each node v ∈ V of
a graph G = (V,E) such that the number of edges {u, v} ∈ E for which u and v get different colors
is maximized. A simple randomized algorithm for the problem would be to (independently) assign a
uniform random color to each node.
What is the expected approximation ratio of this algorithm?

Hint: Consider the approximation ratio to be the minimum ratio of the algorithm solution to the
optimal solution over all input instances.

Exercise 4: Max Cut (1+3+5+3 Points)

Let G = (V,E) with n = |V |,m = |E| be an undirected, unweighted graph. Consider the following
randomized algorithm: Every node v∈V joins the set S with probability 1

2 . The output is (S, V \S).

(a) What is the probability to actually obtain a cut?

(b) For e ∈ E let random variable Xe = 1 if e crosses the cut, and Xe = 0, else. Let X =
∑

e∈E Xe.
Compute the expectation E[X] of X.

(c) Show that with probability at least 1/3 this algorithm outputs a cut which is a 1
4 -approximation

to a maximum cut (i.e. a cut of maximum possible size is at most 4 times as large).

Remark: For a non-negative random variable X, the Markov inequality states that for all t > 0 we
have P(X ≥ t) ≤ E[X]

t .

Hint: Apply the Markov inequality to the number of edges not crossing the cut.

(d) Show how to use the above algorithm to obtain a 1
4 -approximation of a maximum cut with pro-

bability at least 1−
(
2
3

)k
for k ∈ N.

Remark: If you did not succeed in (c) you can use the result as a black box for (d).


