Chapter 1
Divide and Conquer

Algorithm Theory
WS 2018/19

Fabian Kuhn

UNI

FREIBURG

Divide-And-Conquer Principle

UNI
f

FREIBURG

e |mportant algorithm design method

e Examples from basic alg. & data structures class (Informatik 2):

Sorting: Mergesort, Quicksort
Binary search

e Further examples

Median

Compairing orders

Convex hull / Delaunay triangulation / Voronoi diagram
Closest pairs

Line intersections

Polynomial multiplication / FFT

Algorithm Theory, WS 2018/19 Fabian Kuhn 2

Formulation of the D&C principle

UNI
i

FREIBURG

Divide-and-conquer method for solving a
problem instance of size n:

n < c: Solve the problem directly.

n > c: Divide the problem into k subproblems of
sizesn, ..., < n(k = 2).

Solve the k subproblems in the same way
(recursively).

Combine the partial solutions to generate a solution
for the original instance.

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI
FREIBURG

Running Time

Recurrence relation:
Tn)=2-T(n/2)+c-n, T(1) =a

Solution:
e Same as for computing number of number of inversions,
merge sort (and many others...)

T(n) = 0(n-logn)

Algorithm Theory, WS 2018/19 Fabian Kuhn

Recurrence Relations: Master Theorem)

FRE:BURG

UNI

Recurrence relation

Tm)=a-T (g) +fm), T =0(1) forn < ng

Cases
¢« f(n) =0, c<logya
T(n) = O(nlo8» @)
¢ f(n) =Q(n°), c>logya
T(n) = 0(f(n))
« f(n) =0(n-logkn), c =log,a
T(n) = O(n¢ - logktln)

Algorithm Theory, WS 2018/19 Fabian Kuhn 5

Polynomials

UNI
f

FREIBURG

Real polynomial p in one variable x:

p(x) = ap_1x" 1 + . +ax! + a

Coefficients of p: ay, a4, ...,a, € R
Degree of p: largest power of x in p (n — 1 in the above case)

Example:

p(x) = 3x3- 15x* + 18x

Set of all real-valued polynomials in x: R|x| (polynomial ring)

(@)}

Algorithm Theory, WS 2018/19 Fabian Kuhn

Divide-&-Conquer Polynomial Multiplication

UNI

FREIBURG

* Multiplication is slow (@(nz)) when using the standard
coefficient representation

* Try divide-and-conquer to get a faster algorithm

* Assume: degreeisn — 1, niseven

e Divide polynomial p(x) = a,,_1x" 1 + .-+ a4 into 2
polynomials of degree "/, — 1:

po(x) = Cln/z_lxn/z‘1 + 4 ag

p1(x) = an—1xn/2_1 + e+ any,,

p(x) = pr(x) - x /2 + po(x)

Similarly: g(x) = g1 (x) - x 72 + qo(x)

Algorithm Theory, WS 2018/19 Fabian Kuhn

Divide-&-Conquer Polynomial Multiplication _

UNI
FREIBURG

 Divide:
p(x) = p1(x) - x 12 +po(x), qx) = q1(x) - x' /2 + qo(x)

* Multiplication:
p(x)q(x) = p1(x)q,(x) - x™ +)
(o (x)qq(x) + p1(x)qo(x)) - x /2 + o) g (%)

* 4 multiplications of degree "/, — 1 polynomials:

T(n) = 4T("/,) + 0(n)

Leads to T(n) = ©(n?) like the naive algorithm...
— follows immediately by using the master theorem

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

UNI

Karatsuba Algorithm

FREIBURG

e Recursive multiplication:

r(x) = (Po(x) + P1(x)) ‘ (QO(x) + Ch(x))
p(x)q(x) = p;(x)q.(x) - x™
+ (r(x) — po(¥)qo(x) + p1(¥)q1 (%)) - x /2
+ po(x)qo(x)
* Recursively do 3 multiplications of degr. (*/, — 1)-polynomials

T(n) = 3T(n/2) + 0(n)

e Gives: T(n) = 0(n'°8496-) (see Master theorem)

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

UNI

Representation of Polynomials

FREIBURG

Coefficient representation:

* Polynomial p(x) € R[x] of degree n — 1 is given by its
n coefficients ay, ..., a,,_1:

p(x) =a,_x" 1+ +ax+a,

» Coefficient vectora = (ay,a,...a,—1)

 Example:
p(x) = 3x3 — 15x% + 18x

 The most typical (and probably most natural) representation of
polynomials

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

Representation of Polynomials

UNI

FREIBURG

Point-value representation:

* Polynomial p(x) € R[x] of degree n — 1 is given by
n point-value pairs:

P = {(XO' p(x())), (le p(xl)): L (xn—lJ p(xn—l))}
where x; # x; for i # j.

 Example: The polynomial
p(x) =3x(x —2)(x —3)

is uniquely defined by the four point-value pairs
(0,0), (1,6),(2,0), (3,0).

Algorithm Theory, WS 2018/19 Fabian Kuhn

11

Operations: Coefficient Representation ;

UNI
FREIBURG

p(x) = ap_1x" ' +-+ag, qx) =by_1x" ' + -+ by
Evaluation: Horner’s method: Time O(n)

Addition:
p(x) T CI(X) — (an—l + bn—l)xn_1 Tt (aO + bO)

* Time: 0(n)

Multiplication:
i
p(x) - q(x) = Cpppx?™ % + -+ + ¢, where ¢; = z a;b;_;
j=0
* Naive solution: Need to compute product a;b; forall0 < i,j <n

e Time: 0(n?)

Algorithm Theory, WS 2018/19 Fabian Kuhn 12

Operations: Point-Value Representation .

UNI
FREIBURG

P = {(XO, p(xO)): LN (xn—lJ p(xn—l))}
q = {(xo, CI(xo)), ey (xn—l' q(xn—l))}

* Note: we use the same points Xy, ..., x,, for both polynomials

Addition:

p+q= {(XO»P(xo) + Q(xo)); . (xn—1»P(xn—1) + Q(xn—1))}
* Time: 0(n)
Multiplication:

p-q= {(XO»P(XO) ' Cl(xo));) (xZn—z»P(xzn—z) ' Cl(xzn—z))}
* Time: 0O(n)

Evaluation: Polynomial interpolation can be done in 0(n?)

Algorithm Theory, WS 2018/19 Fabian Kuhn 13

Operations on Polynomials

UNI

FREIBURG

Cost depending on representation:

Coefficient Roots Point-Value
Evaluation 0(n) 0(n) 0(n?)
Addition o(n) 0 Oo(n)
Multiplication | 0(n'5%) 0(n) 0(n)
Algorithm Theory, WS 2018/19 Fabian Kuhn

14

Faster Polynomial Multiplication?

UNI
f

FREIBURG

Multiplication is fast when using the point-value representation

Idea to compute p(x) - g(x) (for polynomials of degree < n):

p, q of degree n — 1, n coefficients

l Evaluation at points xg, X1, ..., X25—»

2 X 2n point-value pairs (xi,p(xi)) and (xl-, q(xl-))

l Point-wise multiplication

2n point-value pairs (x;, p(x;)q(x;))
l Interpolation

p(x)q(x) of degree 2n — 2, 2n — 1 coefficients

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

Coefficients to Point-Value Representation _

UNI
FREIBURG

Given: Polynomial p(x) by the coefficient vector (ay, a4, ..., ay—1)

Goal: Compute p(x) for all x in a given set X
— Where X isof size | X| =N
— Assume that N is a power of 2

Divide and Conquer Approach

* Divide p(x) of degree N — 1 (N is even) into 2 polynomials of
degree V/, — 1 differently than in Karatsuba’s algorithm

 po(¥) =ag+ a,y+a,y®+ -+ aN_ZyN/Z‘1 (even coeff.)
p(Y) =a; +azy + azsy? + - +ay_1y 7271 (odd coeff.)

Algorithm Theory, WS 2018/19 Fabian Kuhn 16

Coefficients to Point-Value Representation _

UNI
FREIBURG

Goal: Compute p(x) for all x in a given set X of size |[X| = N
* Divide p(x) of degr. N — 1 into 2 polynomials of degr. v/, — 1

po(Y) = ag + a,y + a,y* + - + 01,\,_2311\’/2‘1 (even coeff.)
p:(y) =a; +azy +asy? + -+ aN_lyN/Z_1 (odd coeff.)

Let’s first look at the “combine” step:
VX €X: p(x)=po(x?) +x-ps(x?)

e Recursively compute py(y) and p,(y) forall y € X*
— Where X? := {x? : x € X}

* Generally, we have |X?| = |X|

Algorithm Theory, WS 2018/19 Fabian Kuhn 17

Analysis

UNI

FREIBURG

Recurrence formula for the given algorithm:

Algorithm Theory, WS 2018/19 Fabian Kuhn

18

Faster Algorithm?

UNI

FREIBURG

* In order to have a faster algorithm, we need | X?| < |X|

Algorithm Theory, WS 2018/19 Fabian Kuhn

19

Choice of X

UNI

* Select points xg, X1, ..., Xy—1 to evaluate p and g in a clever way

Consider the N complex roots of unity:

Principle root of unity: wy = ezni/N 2

(i =v-1, e? = 1) w ‘Ufls

Powers of w,, (roots of unity): wg wg =1
1=owY wy, .., ol 1
w
8 6
Wg

2mik 2Tk . 2Tk
Note: a),’f, =e™/N = cos—+l SIn—-

Algorithm Theory, WS 2018/19 Fabian Kuhn 20

FREIBURG

Properties of the Roots of Unity

UNI
f

FREIBURG

e (Cancellation Lemma:

For all integersn > 0, kK = 0, and d > 0, we have:

dk _ .k
D g, = Wy,

 Proof:

Algorithm Theory, WS 2018/19

wwl§+n

Fabian Kuhn

:w;‘l

21

Properties of the Roots of Unity

UNI
f

FREIBURG

Claim: If X = {wgk : 1 €{0,...,2k — 1}}, we have

X* ={w}:i€(0,.. k—1}},

Algorithm Theory, WS 2018/19

Fabian Kuhn

| x*| =

2

| X

22

Analysis

UNI
f

FREIBURG

New recurrence formula:

TN, |XD)=2-T (N/Z, |X|/2) + O(N + |X])

Algorithm Theory, WS 2018/19

Fabian Kuhn

23

