$11 F$

Chapter 2
 Greedy Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Greedy Algorithms

- No clear definition, but essentially:

In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
- Optimal solutions
- Close to optimal solutions
- No (reasonable) solutions at all
- If it works, very interesting approach!
- And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

- Given: Set of intervals, e.g. $[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]$

- Goal: Select largest possible non-overlapping set of intervals
- For simplicity: overlap at boundary ok (i.e., $[4,7]$ and $[7,9]$ are non-overlapping)
- Example: Intervals are room requests; satisfy as many as possible

Greedy Algorithms

- Several possibilities...

Choose first available interval:

Choose shortest available interval:

Greedy Algorithms

Choose available request with earliest finishing time:

$R:=$ set of all requests; $S:=$ empty set;
while R is not empty do
choose $r \in R$ with smallest finishing time
add r to S
delete all requests from R that are not compatible with r
end
// S is the solution

Earliest Finishing Time is Optimal

- Let O be the set of intervals of an optimal solution
- Can we show that $S=O$?
- No...

- Show that $|S|=|O|$.

Greedy Stays Ahead

 $b_{i, \ldots}>b_{i}$- Greedy solution S :

$$
\left[a_{1}, b_{1}\right],\left[a_{q}, b_{2}\right], \ldots,\left[a_{|S|}, b_{|S|}\right], \quad \text { where } b_{i} \leq a_{i+1}
$$

- Some optimal solution 0 :

$$
\left[a_{1}^{*}, b_{1}^{*}\right],\left[a_{2}^{*}, b_{2}^{*}\right], \ldots,\left[a_{|O|}^{*}, b_{|O|}^{*}\right], \quad \text { where } b_{i}^{*} \leq a_{i+1}^{*}
$$

- Definde $\underline{b_{i}}:=\infty$ for $i>|S|$ and $b_{i}^{*}:=\infty$ for $i>|O|$

Claim: For all $i \geq 1, b_{i} \leq b_{i}^{*} \Longrightarrow|S| \geqslant|0|$ because $\underline{b_{\mid 01}} \leq b_{101}^{*}<\infty$

Greedy Stays Ahead
Claim: For all $i \geq 1, b_{i} \leq b_{i}^{*}$
Proof (by induction on i):
base: $i=1 \quad b_{1} \leq b_{i}^{*}$
step: $i-1 \rightarrow i \stackrel{\text { I.H.: }}{=} b_{i-1} \leq b_{i-1}^{*}$
need to show:
0 :

$$
b_{i} \leq b_{i}^{*}
$$

redinterval is available to greedy alg. in step $:$ because $b_{i-1} \leq \stackrel{b}{i n}_{*}^{n} \leq a_{i}^{*}$
S :

Corollary: Earliest finishing time algorithm is optimal.

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:

- We will see an algorithm using another design technique later.

