$11 F$

Chapter 2
 Greedy Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Greedy Algorithms

- No clear definition, but essentially:

In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
- Optimal solutions
- Close to optimal solutions
- No (reasonable) solutions at all
- If it works, very interesting approach!
- And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

- Given: Set of intervals, e.g. $[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]$

- Goal: Select largest possible non-overlapping set of intervals
- For simplicity: overlap at boundary ok (i.e., $[4,7]$ and $[7,9]$ are non-overlapping)
- Example: Intervals are room requests; satisfy as many as possible

Interval Partitioning

- Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
- Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
- Intervals are requests to use some room during this time
- Assign all requests to some room such that there are no conflicts
- Use as few rooms as possible
- Assignment to 3 resources:

Depth

Depth of a set of intervals:

- Maximum number passing over a single point in time
- Depth of initial example is 4 (e.g., $[0,10],[4,7],[5,8],[5,12]):$

Lemma: Number of resources needed \geq depth d intervals that contain time t

> Lo then weed to go to d diff. resources

Greedy Algorithm

Can we achieve a partition into "depth" non-overlapping sets?

- Would mean that the only obstacles to partitioning are local...

Algorithm:

- Assign labels $1, \ldots$ to the intervals; same label \rightarrow non-overlapping

1. sort intervals by starting time: $I_{1}, I_{2}, \ldots, I_{n}$
2. for $i=1$ to n do
3. assign smallest possible label to I_{i} (possible label: different from conflicting intervals $I_{j}, j<i$)
4. end

Interval Partitioning Algorithm

Example:

- Labels:

- Number of labels $=$ depth $=4$

Interval Partitioning: Analysis

Theorem:

a) Let d be the depth of the given set of intervals. The algorithm assigns a label from $\underline{1, \ldots, d}$ to each interval.
b) Sets with the same label are non-overlapping

Proof:

- b) holds by construction
- For a):
- All intervals $I_{j}, j<i$ overlapping with I_{i}, overlap at the beginning of I_{i}

- At most $d-1$ such intervals \rightarrow some label in $\{1, \ldots, d\}$ is available.

$$
\leqslant d
$$

Traveling Salesperson Problem (TSP)

Input:

- Set \underline{V} of \underline{n} nodes (points, cities, locations, sites)
- Distance function $d: V \times V \rightarrow \mathbb{R}$, i.e., $d(u, v)$: dist. from u to v
- Distances usually symmetric, asymm. distances \rightarrow asymm. TSP

Solution:

- Ordering/permutation $\underline{v}_{1}, v_{2}, \ldots, v_{n}$ of nodes
- Length of TSP path: $\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right) \quad \vdots \stackrel{\circ}{\circ}={ }^{3} \cdots 0^{n}$
- Length of TSP tour: $\underline{d\left(v_{n}, v_{1}\right)+\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right)}$

Goal:

- Minimize length of TSP path or TSP tour

Example

Optimal Tour:

Length: 86

Greedy Algorithm?

Length: 121

Nearest Neighbor (Greedy)

- Nearest neighbor can be arbitrarily bad, even for TSP paths

TSP Variants

- Asymmetric TSP
- arbitrary non-negative distance/cost function
- most general, nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum
- Symmetric TSP
- arbitrary non-negative distance/cost function
- nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum

- Metric TSP Euclidean TSP
- distance function defines metric space: symmetric, non-negative, triangle inequality: $d(u, v) \leq d(u, w)+d(w, v)$
- possible to get close to optimum (we will later see factor $3 / 2$)
- what about the nearest neighbor algorithm?

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost $=24$
marked red edges: arrow to it
$\frac{\text { green edges }}{\text { Q PT }} \geqslant \frac{\text { marked red edges }}{\text { Q }}$
\# marked red edges:
at least half

Metric TSP, Nearest Neighbor

Triangle Inequality: optimal tour on remaining nodes overall optimal tour

green \geqslant marked red
SOPT

Metric TSP, Nearest Neighbor

Analysis works in phases:

- In each phase, assign each optimal edge to some greedy edge
- Cost of greedy edge \leq cost of optimal edge
- Each greedy edge gets assigned ≤ 2 optimal edges
- At least half of the greedy edges get assigned
- At end of phase:

Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

- Triangle inequality: remaining opt. solution \leq overall opt. sol.
- Cost of greedy edges assigned in each phase \leq opt. cost
- Number of phases $\leq \underline{\underline{\log _{2} n}}$
-+1 for last greedy edge in tour

Metric TSP, Nearest Neighbor

- Assume:

NN: cost of greedy tour, OPT: cost of optimal tour

- We have shown:

$$
\frac{\underline{\mathrm{NN}}}{\underline{\mathrm{OPT}}} \leq \underbrace{1+\log _{2} n}_{\text {approximation ratio }}
$$

- Example of an approximation algorithm
- We will later see a $3 / 2$-approximation algorithm for metric TSP

Back to Scheduling

- Given: n requests / jobs with deadlines:

- Goal: schedule all jobs with minimum lateness L
- Schedule: $s(i), f(i)$: start and finishing times of request i Note: $f(i)=s(i)+t_{i}$
- Lateness $L:=\max \left\{0, \max _{i}\left\{f(i)-d_{i}\right\}\right\}$
- largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Greedy Algorithm?

Schedule jobs in order of increasing length?

- Ignores deadlines: seems too simplistic...
- E.g.:

$$
t_{1}=10 \quad \text { deadline } d_{1}=10
$$

$$
\cdots \quad \mid d_{2}=100
$$

Schedule: $t_{2}=2$

$$
t_{1}=10
$$

Schedule by increasing slack time?

- Should be concerned about slack time: $d_{i}-t_{i}$

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_{i}
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

Algorithm:

- Assume jobs are reordered such that $\underline{d_{1} \leq d_{2} \leq \cdots \leq d_{n}}$
- Start/finishing times:
- First job starts at time $s(1)=0 \quad f(1)=s(1)+t_{1}=t_{1}$
- Duration of job i is $t_{i}: \overline{f(i)=s(i)+t_{i} \quad s(2)=f(1)}$
- No gaps between jobs: $s(i+1)=f(i)$
(idle time: gaps in a schedule \rightarrow alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:

Lateness: job 1: 0 , job 2: 0 , job 3: 4, job 4: 5

Basic Facts

1. There is an optimal schedule with no idle time

- Can just schedule jobs earlier...

2. Inversion: Job i scheduled before job j if $d_{i}>d_{j}$ Schedules with no inversions have the same maximum lateness

Earliest Deadline is Optimal

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

- Consider some schedule \mathcal{O}^{\prime} with no idle time
- If \mathcal{O}^{\prime} has inversions, \exists pair (i, j), s.t. i is scheduled immediately before j and $d_{j}<d_{i}$

- Claim: Swapping i and j gives a schedule with

1. Fewer inversions
2. Maximum lateness no larger than in \mathcal{O}^{\prime}

Earliest Deadline is Optimal

Claim: Swapping i and j : maximum lateness no larger than in \mathcal{O}^{\prime}

Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

- Minimum spanning tree (MST) problem
- Classic graph-theoretic optimization problem
- Given: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
- Start with empty edge set
- As long as we do not have a spanning tree: add minimum weight edge that doesn't close a cycle

Kruskal Algorithm: Example

Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T^{\prime}
- Swap out edge not in Kruskal tree, swap in edge in Kruskal tree
- Swapping does not increase total weight
- For simplicity, assume, weights are unique:
T : any spanning tree T_{r} : Kruskal tree

$$
T \neq T_{k} \quad e \in T-T_{k}
$$

$$
\begin{aligned}
& \text { among } \& R \\
& T^{\prime}:=T \cup\{f\},\{c\} \Rightarrow \text { sp. tree } \\
& \frac{\omega(f) \leq, \leq 1(e):}{\text { assume otherwise }(\omega(e)<\omega(f))}
\end{aligned}
$$

Krustal considers e before f
\Longrightarrow Knslal would all e
repel. e by $f \Rightarrow$ una sp. Tee T^{\prime} $\omega\left(T^{\prime}\right), \leqslant \omega(T)$

Matroids

$$
\begin{aligned}
& E=\{1,2,3,4\} \\
& I=\{0,3\}, 323,33\}, 34\}, 31,23, \ldots, 33,4\}\}
\end{aligned}
$$

- Same, but more abstract...

$$
A=\{2,33
$$

Matroid: pair (E,I)

$$
B=\{2\} \quad B=34\}
$$

- E: set, called the ground set set of elements
- I: finite family of finite subsets of E (i.e., $I \subseteq 2^{E}$), called independent sets
(E, I) needs to satisfy 3 properties:

1. Empty set is independent, i.e., $\varnothing \in I$ (implies that $I \neq \varnothing$)
2. Hereditary property: For all $A \subseteq E$ and all $\underline{A^{\prime} \subseteq A \text {, }}$ if $A \in I$, then also $A^{\prime} \in I$
3. Augmentation / Independent set exchange property: If $\underline{\underline{A, B \in I}}$ and $\underline{\underline{A|>| B} \mid \text {, there exists } x \in A \backslash B}$ such that

$$
\underline{\mathbf{B}}^{\prime}:=\frac{\boldsymbol{B} \cup\{\boldsymbol{x}\}}{\text { Fabian Kuhn }} \in \boldsymbol{I}
$$

Example

- Fano matroid:
- Smallest finite projective plane of order 2...

Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight $w(e)>0$

Goal: find maximum weight independent set

Greedy algorithm:

1. Start with $S=\emptyset$
2. Add max. weight $e \in E \backslash S$ to S such that $S \cup\{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

- S : greedy solution
A : any other solution

Matroids: Examples

Forests of a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$:

- forest F : subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests $\rightarrow(\underline{E}, \mathcal{F})$ is a matroid
- Greedy algorithm gives maximum weight forest (equivalent to MST problem)

Bicircular matroid of a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$:

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E, \mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E : finite set of vectors, I : sets of lin. indep. vect.
- Fano matroid can be defined like that

