Chapter 2
Greedy Algorithms

Algorithm Theory
WS 2018/19

Fabian Kuhn

UNI

FREIBURG

Greedy Algorithms

UNI
FREIBURG

* No clear definition, but essentially:

In each step make the choice that
looks best at the moment!

 Depending on problem, greedy algorithms can give
— Optimal solutions
— Close to optimal solutions
— No (reasonable) solutions at all

* Ifit works, very interesting approach!

— And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Algorithm Theory, WS 2018/19 Fabian Kuhn 2

Interval Scheduling

UNI
FREIBURG

* Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],13,5],[4,71,[5,8],[5,121,[7,9],[9,12],[8,10],[11,14],[12,14]

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

* Goal: Select largest possible non-overlapping set of intervals

— For simplicity: overlap at boundary ok
(i.e., [4,7] and [7,9] are non-overlapping)

 Example: Intervals are room requests; satisfy as many as possible

Algorithm Theory, WS 2018/19 Fabian Kuhn 3

Interval Partitioning

* Schedule all intervals: Partition intervals into as few as
possible non-overlapping sets of intervals

— Assign intervals to different resources, where each resource needs to
get a non-overlapping set

 Example:
— Intervals are requests to use some room during this time
— Assign all requests to some room such that there are no conflicts

— Use as few rooms as possible

* Assignment to 3 resources:

[1,3] [4,7] [9,12]
[1,4] [5,8] [9,11] [12,14]
[2,4] [5,12]

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI
f

FREIBURG

Depth

UNI
FREIBURG

Depth of a set of intervals:

 Maximum number passing over a single point in time

* Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

[0,10] [11,14]
[1,3] [4,7] [719] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]
(l) i é é é ée% EI. SIB 1IO 1|1 1|2 1|3 1|4

Lemma: Number of resources needed = depth

0(‘w&étn\s '«‘“‘ Q"Jp"\"'\ <\>\ﬂ& t
Lz;-%.w) woed do e o ﬂ&iﬂ. NOSOUPR S

Algorithm Theory, WS 2018/19

Fabian Kuhn

Greedy Algorithm

UNI
FREIBURG

Can we achieve a partition intoi”de—g-th’i non-overlapping sets?

 Would mean that the only obstacles to partitioning are local...

Algorithm:
* Assign labels 1, ... to the intervals; same label = non-overlapping

——

1. sortintervals by starting time: I, I, ..., I,

2. fori=1tondo

assign smallest possible label to I;
(possible label: different from conflicting intervals I;, j < i)

4. end

Algorithm Theory, WS 2018/19 Fabian Kuhn 6

Interval Partitioning Algorithm

UNI
FREIBURG

Example: \ Z 3 A
e Labels:
— ——
' [0,10] " [11,14]
21131 | |F 471 P79 |“ [9,12]
3 [1,4] © [58] °[8,10] “[12,14]
1[35] * [5,12]
| | | ’ | | | | |

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of labels = depth = 4

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

Interval Partitioning: Analysis

|
FREIBURG

UNI

Theorem:

Let d be the depth of the given set of intervals. The
algorithm assigns a label from 1, ..., d to each interval.

b) Sets with the same label are non-overlapping

Proof:
* b) holds by construction
* Fora):

— Allintervals [;, j < i overlapping with [;, overlap at the beginning of I;
e -

! .

C J < d-|
\ { \

— At most d — 1 subhintervals = some label in {1, ...,d} is available.

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

Traveling Salesperson Problem (TSP)

Input:

* SetV of n nodes (points, cities, locations, sites)

* Distance functiond:V XV - R, i.e.,, d(u,v): dist. fromu to v
 Distances usually symmetric, asymm. distances = asymm. TSP

Solution:
. Ordering/permutationwz, ..., U, of nodes

(I rd “
 Length of TSP path: Y= d(v;, vjy1) o= -~ — °

e Length of TSP tour: d(v,, v1) + Yrei d(v;, Vi)

Goal:
 Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

UNI
f

FREIBURG

UNI
f

FREIBURG

Optimal Tour:
Length: 86

Greedy Algorithm?

Length: 121

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

Nearest Neighbor (Greedy)

UNI
f

FREIBURG

* Nearest neighbor can be arbitrarily bad, even for TSP paths

Algorithm Theory, WS 2018/19

Fabian Kuhn

11

TSP Variants

UNI
FREIBURG

* Asymmetric TSP

— arbitrary non—négative distance/cost function Vv

— most general, nearest neighbor arbitrarily bad

— NP-hard to get within any bound of optimum .
u

* Symmetric TSP v 7 T

oV
— arbitrary non-negative distance/cost function / ”
: o Ny
— nearest neighbor arbitrarily bad
— NP-hard to get within any bound of optimum [

* |Metric TSP | Fuclidean TST

— distance function defines metric space: symmetric, non-negative,
triangle inequality:Ld,(i,;J) <d(uw)+ d(W’m

— possible to get close to optimum (we will later see factor 3/,)

—'\what about the nearest neighbor algorithmﬂ =

Algorithm Theory, WS 2018/19 Fabian Kuhn 12

Metric TSP, Nearest Neighbor

UNI

FREIBURG

Optimal TSP tour:

Nearest-Neighbor TSP tour:

Algorithm Theory, WS 2018/19 Fabian Kuhn

13

Metric TSP, Nearest Neighbor .

UNI
FREIBURG

Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost =24

worleod red eﬂszs '

Grow X T+

M 2 Wared ved eo@e;
?

?
OPT pet of ON

4 warded red ﬂf&e&f
ak (east La‘(

.\

—

14

Algorithm Theory, WS 2018/19 Fabian Kuhn

Metric TSP, Nearest Neighbor

UNI
f

FREIBURG

Triangle Inequality:

optimal tour on remaining nodes
<

overall optimal tour /V

|

0

‘foi 2 wmwled red \ A1
com EE)

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

Metric TSP, Nearest Neighbor

UNI
FREIBURG

Analysis works in phases:

* In each phase, assign each optimal edge to some greedy edge
— Cost of greedy edge < cost of optimal edge

* Each greedy edge gets assigned < Toptimal edges
— At least half of the greedy edges get assigned
* At end of phase:

Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

* Triangle inequality: remaining opt. solution < overall opt. sol.

* Cost of greedy edges assigned in each phase < opt. cost

* Number of phases < log, n

— +1 for last greedy edge in tour
=

Algorithm Theory, WS 2018/19 Fabian Kuhn 16

UNI

Metric TSP, Nearest Neighbor

FREIBURG

* Assume:
NN: cost of greedy tour, OPT: cost of optimal tour

W0 < ((+ bg,u)-OPT

e We have shown: ?\"
NN <1+1 F‘“‘“
OPT ~ 12277

d(ymx}ma#a« rako

 Example of an approximation algorithm

We will later see a 3/,-approximation algorithm for metric TSP

i

Algorithm Theory, WS 2018/19 Fabian Kuhn 17

Back to Scheduling

UNI
FREIBURG

£

* Given: n requests / jobs with deadlines:

length t; = 10

|deadline d; =11

L=t |d, =10
t; =3 |d; =13
t4,=5 Id4=7
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

* Goal: schedule all jobs with minimum lateness L

— Schedule: s(i), f (i): start and finishing times of request i
Note: f(i) = s(i) + ¢;

e Lateness L := max {O, max{f (i) —
l

di}}

—_— 4 =

— largest amount of time by which some job finishes late

 Many other natural objective functions possible...

Algorithm Theory, WS 2018/19

Fabian Kuhn 18

UNI

Greedy Algorithm?

FREIBURG

Schedule jobs in order of increasing length?
* Ignores deadlines: seems too simplistic...

* E.g.:
t; = 10 | deadline d; = 10
==
t, = 2 o |dy =100
- =——N
Schedule:| t, = 2 t; =10

Schedule by increasing slack time?
e Should be concerned about slack time: d; — t;

i
tl = 10 @eadline dl =10
t, = 2 IdZ =3 (a({wzss: 3
ks |
Schedule: t; = 10 t, = 2

Algorithm Theory, WS 2018/19 Fabian Kuhn 19

Greedy Algorithm

UNI
FREIBURG

Schedule by earliest deadline?
* Schedule in increasing order of d;
* Ignores lengths of jobs: too simplistic?

e Earliest deadline is optimall!

Algorithm:
* Assume jobs are reordered such thatd; < d, < --- <d,

 Start/finishing times:
— First job starts at time s(1) = 0 1&‘7‘—‘ s(n+%, =%,
— Duration of job iist;: f(i) = s(i) + ¢; S@)= far)
— No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)

Algorithm Theory, WS 2018/19 Fabian Kuhn 20

Example

Jobs ordered by deadline:

UNI
f

FREIBURG

t1=5 Id4:7
t2=3 Id2:10
t3=7 \ Id]_:].].
t3=3 Id3=13
- =
012345678910]11121314
Schedule: | ¢ (F
<% -~ O

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Algorithm Theory, WS 2018/19 Fabian Kuhn

Basic Facts

UNI
FREIBURG

1. There is an optimal schedule with no idle time
— Canjust schedule jobs earlier...

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no inversions have the same maximum lateness

€-\2
Ay
IR AV A== DI T VT ,
R i
A= 1| A= 12 | lalewess A=273

Algorithm Theory, WS 2018/19 Fabian Kuhn 22

UNI

Earliest Deadline is Optimal

FREIBURG

Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
e Consider some schedule O’ with no idle time

. Ifg_’ has inversions, 3 pair (i,), s.t. i is scheduled immediately
before j and d; < d; -
d.' J J..Ji'> d)-

- d‘. ? J)' _
< f--— "‘.ZD’ 'i5 :

* Claim: Swapping i and j gives a schedule with
1. Fewerinversions

—~—

2. Maximum lateness no larger than in O’

=

Algorithm Theory, WS 2018/19 Fabian Kuhn 23

Earliest Deadline is Optimal

FREIBURG

5
Claim: Swapping i and j: maximum lateness no larger than in O’
. d:
) , J(‘>d-
\)
l ¢
A | N 5\ -
i —
| —D
\ y
o
3 ¢
T |
— /
|alewess befoe swap
Algorithm Theory, WS 2018/19 Fabian Kuhn 24

Exchange Argument

UNI
f

FREIBURG

* General approach that often works to analyze greedy algorithms

e Start with any solution

* Define basic exchange step that allows to transform solution into
a new solution that is not worse

* Show that exchange step move solution closer to the solution
produced by the greedy algorithm

* Number of exchange steps to reach greedy solution should be
finite...

Algorithm Theory, WS 2018/19 Fabian Kuhn 25

Another Exchange Argument Example

UNI
FREIBURG

 Minimum spanning tree (MST) problem
— Classic graph-theoretic optimization problem

* Given: weighted graph
* Goal: spanning tree with min. total weight

* Several greedy algorithms work

* Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle

Algorithm Theory, WS 2018/19 Fabian Kuhn

26

Kruskal Algorithm: Example

UNI
f

FREIBURG

16

13

31

11 19
12
20

Algorithm Theory, WS 2018/19 Fabian Kuhn

Kruskal is Optimal

« Basic exchange step: swap to edges to get from tree T to tree T’
— Swap out edge not in Kruskal tree, swap in edge in Kruskal tree

— Swapping does not increase total weight

* For simplicity, assume, weights are unique:
T'- auv S?duu?ué tren Tki KMQLQ‘ fve_
T+T, ecT~] »

‘ C ep e

:M‘w- LA} oW , M

L gt Tt Toffd i3 =5

w(ﬁ)ls,uﬂe):

T assume otlwwxe (wie)<wd))

L (K &us{fq‘ cousidas @ Qd""‘ -Q

= bos ol cerud A ol e
M el [=5 ww g hee T

w(T)g w(T)

Algorithm Theory, WS 2018/19 Fabian Kuhn 28

. £ o
Matroids I___%{,Ugﬁsi[7o 1023, - AL _Eé_
e Same, but more a!ostﬁct... =12,3%

g3 5gs B = 123 R=7%

Matroid: pair (E,
o E:set, called the ground set et eloweds

* [:finite family of finite subsets of E (i.e., I € 2%),
called independent sets

(E,I) needs to satisfy 3 properties:
1. Empty setis independent, i.e., @ € I (implies that I # Q)

—

i. Hereditary property: Forall A € E and all A" C A4,
ifA €I, thenalsoA' €1

3. Augmentation / Independent set exchange property:
If A,B € I and |A| > |B|, there exists x € A \ B such that

B':=BU{x}€el
— g
Algorithm Theory, WS 2018/19 == Fabian Kuhn

29

Example

UNI

FREIBURG

* Fano matroid:
— Smallest finite projective plane of order 2...

Algorithm Theory, WS 2018/19 Fabian Kuhn

30

Matroids and Greedy Algorithms

UNI
f

FREIBURG

Weighted matroid: each e € E has a weight w(e) > 0

= _Z

P

Goal: find maximum weight independent set

Greedy algorithm:
1. StartwithS =0

2. Add max. weighte € E \ StoSsuchthatSu{e} el

Claim: greedy algorithm computes optimal solution

Algorithm Theory, WS 2018/19

Fabian Kuhn

31

Greedy is Optimal

UNI
f

FREIBURG

 S:greedy solution A: any other solution

Algorithm Theory, WS 2018/19 Fabian Kuhn 32

UNI

Matroids: Examples

FREIBURG

Forests of a graph ¢ = (V,E):
e forest F: subgraph with no cycles (i.e., F € F)
« F:setof all forests 2 (E,F) is a matroid

* Greedy algorithm gives maximum weight forest
(equivalent to MST problem)

Bicircular matroid of a graph G = (V,E):
* B:setof edges such that every connected subset has < 1 cycle
* (E,B) is a matroid = greedy gives max. weight such subgraph

Linearly independent vectors:
* Vector space V, E' finite set of vectors, I: sets of lin. indep. vect.

 Fano matroid can be defined like that

Algorithm Theory, WS 2018/19 Fabian Kuhn 33

