

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Matroids

• Same, but more abstract...

Matroid: pair (E, I)

- *E*: set, called the **ground set**
- *I*: finite family of finite subsets of E (i.e., $I \subseteq 2^E$), called **independent sets**

(E, I) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **2.** Hereditary property: For all $A \subseteq E$ and all $A' \subseteq A$,

if $A \in I$, then also $A' \in I$

3. Augmentation / Independent set exchange property: If $A, B \in I$ and |A| > |B|, there exists $x \in A \setminus B$ such that

$$\mathbf{B}' \coloneqq \mathbf{B} \cup \{\mathbf{x}\} \in \mathbf{I}$$

Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight w(e) > 0

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $e \in E \setminus S$ to S such that $S \cup \{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

• *S*: greedy solution

A: any other solution

Matroids: Examples

Forests of a graph G = (V, E):

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests \rightarrow (E,\mathcal{F}) is a matroid
- Greedy algorithm gives maximum weight forest (equivalent to MST problem)

Bicircular matroid of a graph G = (V, E):

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E,\mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
- Fano matroid can be defined like that

Forest Matroid of Graph G = (V, E)

Ground set: E (edges) **Independent sets:** \mathcal{F} (forests of G)

Basic properties: $\emptyset \in \mathcal{F}$ + hereditary property

Empty graph has no cycles, removing edges doesn't create cycles

Independent set exchange property:

- Given \mathcal{F}_1 , \mathcal{F}_2 s.t. $|\mathcal{F}_1| > |\mathcal{F}_2|$
- \mathcal{F}_1 needs to have an edge e connecting two components of \mathcal{F}_2
 - Because it can only have $|\mathcal{F}_2|$ edges connecting nodes inside components

Bicircular Matroid

Bicircular Matroid

Greedoid

- Matroids can be generalized even more
- Relax hereditary property:

Replace
$$A' \subseteq A \subseteq I \implies A' \in I$$

by $\emptyset \neq A \subseteq I \implies \exists a \in A, \text{ s.t. } A \setminus \{a\} \in I$

- Augmentation property holds as before
- Under certain conditions on the weights, greedy is optimal for computing the max. weight $A \in I$ of a greedoid.
 - Additional conditions automatically satisfied by hereditary property
- More general than matroids