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Matroids
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e Same, but more abstract...

Matroid: pair (E,@
o E:set, called the ground set 4 elowsnds

* [:finite family of finite subsets of E (i.e., I € 2%),
called independent sets

(E,I) needs to satisfy 3 properties:

1. Empty setis independent, i.e., @ € I (implies that I + @)
2. Hereditary property: Forall A € E and all A" € A,
ifA €I, thenalsoA' €1

3. Augmentation / Independent set exchange property:
If A,B € I and |A| > |B|, there exists x € A \ B such that
= 2 = P —

e —

B':=BU{x}€el

: == :
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Matroids and Greedy Algorithms
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Weighted matroid: each e € E has a weight w(e) > 0
———————————

Goal: find maximum weight independent set

Greedy algorithm:

1. Start withé =@
2. Add max. weighte € E \ StoSsuchthatSuU{e} €1

Claim: greedy algorithm computes optimal solution
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 S:greedy solution A: any other solution («d. sef)
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Forests of a graph G = (V, E): (€, )
e forest F: subgraph with no cycles (i.e., F € F)
» F:setofall forests 2 (E,F) is a matroid

* Greedy algorithm gives maximum weight forest
(equivalent to MST problem)

Bicircular matroid of a graph G = (V,E):
* B:set of edges such that every connected subset has < 1 cycle

* (E,B) is a matroid = greedy gives max. weight such subgraph

Linearly independent vectors:
* Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
* Fano matroid can be defined like that
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Forest Matroid of Graph G = (V,E)
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Ground set: E (edges) Independent sets: F (forests of ()

Basic properties: @ € F + hereditary property
 Empty graph has no cycles, removing edges doesn’t create cycles

Independent set exchange property:
¢ Given Fy, Fypsit. |Fyl > [F,]  Jeed sl Fufes wa foest
* F, needs to have ;; edge—e_ connecting two components of F,

— Because it can only have |F,| edges connecting nodes inside components

4 @ o
S
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Bicircular Matroid
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Bicircular Matroid

UNI
FREIBURG

(v3) * S€B
\gl S n
\$l= N & al( com?.
hawe  exqctly one
e

Algorithm Theory, WS 2018/19

(VA , (V,C) (A< € B)
Al < ) = Al n-1
(V,A)
L—'D“‘L.MQ s a Cewrw.ou“) MC\/ w:"(a uo Cbl((Q
U
-1 adgps in A

S(Leo\); fal-{" 40(0' au QJP( QGC\ A

C lAas aQan ds@ couy.
U » ViU

[ case 2: k A coutas au adge
Zkom cu M

Coum,
4 Qb

Cov.sul.ol %‘a PL‘
Fabian Kuhn o

Casc |

dofiued by NAU



Greedoid

 Matroids can be generalized even more

* Relax hereditary property:

Replace A'c€Ac] = A €l

by O+AC] = 3da€A s.t. A\{a} el

* Augmentation property holds as before

* Under certain conditions on the weights, greedy is optimal for
computing the max. weight A € [ of a greedoid.
— Additional conditions automatically satisfied by hereditary property

 More general than matroids
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