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Weighted Interval Scheduling

• Given: Set of intervals, e.g. 
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Each interval has a weight 𝒘

• Goal: Non-overlapping set of intervals of largest possible weight
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests of different importance

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 8
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Greedy Algorithms

Choose available request with earliest finishing time:

• Algorithm is not optimal any more
– It can even be arbitrarily bad…

• No greedy algorithm known that works

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 2
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Solving Weighted Interval Scheduling

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖)

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖)
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

• Simple observation:
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛



Algorithm Theory, WS 2018/19 Fabian Kuhn 5

Solving Weighted Interval Scheduling

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖)

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖)
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

• Simple observation:
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛

• Weight of optimal solution for only intervals 1,… , 𝑘: 𝑊 𝑘
Define 𝑝 𝑘 ≔ max 𝑖 ∈ 0,… , 𝑘 − 1 ∶ 𝑓 𝑖 ≤ 𝑠 𝑘

• Opt. solution does not contain interval 𝑛: 𝑾 𝒏 = 𝑾 𝒏− 𝟏

Opt. solution contains interval 𝑛: 𝑾 𝒏 = 𝒘 𝒏 +𝑾(𝒑 𝒏 )
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Example

[0,5], w=2

[1,7], 4

[5,9], 4

[10,13], 1

[2,11], 5

[9,12], 2

𝟏

Interval:

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑
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Recursive Definition of Optimal Solution

• Recall:
– 𝑊(𝑘): weight of optimal solution with intervals 1,… , 𝑘

– 𝑝 𝑘 : last interval to finish before interval 𝑘 starts

• Recursive definition of optimal weight:

∀𝑘 > 1: 𝑊 𝑘 = max 𝑊 𝑘 − 1 ,𝑤 𝑘 +𝑊 𝑝 𝑘

𝑊 1 = 𝑤(1)

Immediately gives a simple, recursive algorithm

Compute p(k) values for all k

W(k):
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
return x
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Running Time of Recursive Algorithm

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝑊(6)

𝑊(5) 𝑊(3)

𝑊(4) 𝑊(3) 𝑊(2) 𝑊(1)

𝑊(3)

𝑊(2)

𝑊(1)

𝑊(1)

𝑊(2) 𝑊(1) 𝑊(1)

𝑊(1)
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Memoizing the Recursion

• Running time of recursive algorithm: exponential!

• But, alg. only solves 𝑛 different sub-problems: 𝑊 1 ,… ,𝑊(𝑛)

• There is no need to compute them multiple times

Memoization: Store already computed values for future rec. calls

Compute p(k) for all k

memo = {};

W(k):
if k in memo: return memo[k]
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
memo[k] = x
return x
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Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems
has to be solved again

Weighted interval scheduling: subproblems 𝑊 1 ,𝑊 2 ,𝑊 3 ,…

runtime = #subproblems ⋅ time per subproblem

10

Dynamic Programming (DP)

DP ≈ Recursion + Memoization
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• Where das does the name come from?

• DP was developed by Richard E. Bellman in 1940s/1950s.

• In his autobiography, it says:
"I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for 
multistage decision processes. … The 1950s were not good years for 
mathematical research. We had a very interesting gentleman in Washington 
named Wilson. He was Secretary of Defense, and he actually had a pathological 
fear and hatred of the word research. … His face would suffuse, he would turn 
red, and he would get violent if people used the term research in his presence. 
You can imagine how he felt, then, about the term mathematical. … Hence, I felt 
I had to do something to shield Wilson and the Air Force from the fact that I was 
really doing mathematics inside the RAND Corporation. What title, what name, 
could I choose? In the first place I was interested in planning, in decision making, 
in thinking. But planning, is not a good word for various reasons. I decided 
therefore to use the word “programming”. I wanted to get across the idea that 
this was dynamic, this was multistage, this was time-varying. … It also has a 
very interesting property as an adjective, and that it's impossible to use the 
word dynamic in a pejorative sense. … Thus, I thought dynamic programming 
was a good name. It was something not even a Congressman could object to. …“

11

DP: Some History …
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Example

Computing the schedule: store where you come from!

𝒘 = 𝟐

𝒘 = 𝟒

𝒘 = 𝟒

𝒘 = 𝟏

𝒘 = 𝟓

𝒘 = 𝟐

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝒘 = 𝟑𝟕 𝒑 𝟕 = 𝟓

𝒘 = 𝟔𝟖 𝒑 𝟖 = 𝟒

𝟎𝑾: 𝟐 𝟒 𝟔 𝟔 𝟖 𝟖 𝟏𝟏 𝟏𝟐

𝑊[0]𝑊[1]𝑊[2]𝑊[3]𝑊[4]𝑊[5]𝑊[6]𝑊[7]𝑊[8]
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„Memoization“ for increasing the efficiency of a recursive solution:

• Only the first time a sub-problem is encountered, its solution is 
computed and then stored in a table. Each subsequent time that 
the subproblem is encountered, the value stored in the table is 
simply looked up and returned

(without repeated computation!).

• Computing the solution: For each sub-problem, store how the 
value is obtained (according to which recursive rule).

Dynamic Programming
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Dynamic Programming

Dynamic programming / memoization can be applied if

• Optimal solution contains optimal solutions to sub-problems
(recursive structure)

• Number of sub-problems that need to be considered is small
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Matrix-chain multiplication

Given: sequence (chain)  𝐴1, 𝐴2, … , 𝐴𝑛 of matrices

Goal: compute the product 𝐴1  𝐴2 …  𝐴𝑛

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is 

• a single matrix 

• or the product of two fully parenthesized matrix products, 
surrounded by parentheses.
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All possible fully parenthesized matrix products of the chain 
𝐴1, 𝐴2, 𝐴3, 𝐴4:

( 𝐴1 ( 𝐴2 ( 𝐴3𝐴4 ) ) )

( 𝐴1 ( ( 𝐴2𝐴3 ) 𝐴4 ) )

( ( 𝐴1𝐴2 )( 𝐴3𝐴4 ) )

( ( 𝐴1 ( 𝐴2𝐴3 ) ) 𝐴4 )

( ( ( 𝐴1𝐴2 )𝐴3 ) 𝐴4 )

Example
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Different parenthesizations

Different parenthesizations correspond to different trees:

𝐴1 𝐴2 𝐴3𝐴4

𝐴1 𝐴2𝐴3 𝐴4

𝐴1𝐴2 𝐴3𝐴4

𝐴1𝐴2 𝐴3 𝐴4
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Number of different parenthesizations

• Let 𝑃(𝑛) be the number of alternative parenthesizations of 
the product 𝐴1 ⋅ … ⋅ 𝐴𝑛:

•

𝑃 1 = 1

𝑃 𝑛 = ෍

𝑘=1

𝑛−1

𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘) , for 𝑛 ≥ 2

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛

≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5

𝑃 𝑛 + 1 = 𝐶𝑛 (𝑛𝑡ℎ Catalan number)

• Thus: Exhaustive search needs exponential time!
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Multiplying Two Matrices

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞
, 𝐵 = 𝑏𝑖𝑗 𝑞×𝑟

, 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟

𝑐𝑖𝑗 = ෍

𝑘=1

𝑞

𝑎𝑖𝑘𝑏𝑘𝑗

Algorithm Matrix-Mult

Input: (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟 matrix 𝐵

Output: (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵
1  for 𝑖 ≔ 1 to 𝑝 do
2      for 𝑗 ≔ 1 to 𝑟 do
3           𝐶 𝑖, 𝑗 ≔ 0;
4           for 𝑘 ≔ 1 to 𝑞 do
5 𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

Number of multiplications and additions: 𝒑  𝒒  𝒓

Remark: 

Using this algorithm, multiplying 
two (𝑛  𝑛) matrices requires 𝑛3

multiplications. This can also be 
done using 𝑂(𝑛2.373)
multiplications.
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Matrix-chain multiplication: Example

Computation of the product 𝐴1𝐴2𝐴3 , where

𝐴1 : (50  5) matrix

𝐴2 : (5  100) matrix

𝐴3 : (100  10) matrix

a) Parenthesization ((𝐴1𝐴2)𝐴3) and 𝐴1 𝐴2𝐴3 require:

𝐴′ = (𝐴1𝐴2):                                 𝐴
′′ = (𝐴2𝐴3):

𝐴′𝐴3:                                                𝐴1𝐴′′:

Sum:
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Structure of an Optimal Parenthesization

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏

• Any optimal solution contains optimal solutions for sub-problems

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟)

• Then:
𝑪 𝒂, 𝒃 = 𝒎𝒊𝒏

𝒂≤𝒌<𝒃
𝑪 𝒂, 𝒌 + 𝑪 𝒌 + 𝟏, 𝒃 + 𝒅𝒂−𝟏𝒅𝒌 𝒅𝒃

𝑪 𝒂, 𝒂 = 𝟎
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Recursive Computation of Opt. Solution

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

𝐶(1,5)

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5)

𝐶(2,3)𝐶(1,2)

𝐶(3,5) 𝐶(4,5)

𝐶(1,3)𝐶(1,2) 𝐶(2,4)𝐶(2,3) 𝐶(2,3)𝐶(2,4) 𝐶(4,5)𝐶(3,5)

𝐶(4,5)𝐶(3,4)

𝐶(2,3)𝐶(1,2) 𝐶(3,4)𝐶(2,3) 𝐶(3,4)𝐶(2,3) 𝐶(4,5)𝐶(3,4)
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Using Meomization

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛:

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once  𝑂 𝑛2 values

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛) overall time: 𝑶 𝒏𝟑

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5)

𝐶(1,3) 𝐶(2,4) 𝐶(3,5)

𝐶(1,4) 𝐶(2,5)

𝐶(1,5)
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Remarks about matrix-chain multiplication 

1. There is an algorithm that determines an optimal 
parenthesization in time 

𝑂 𝑛 ⋅ log 𝑛 .

2. There is a linear time algorithm that determines a 
parenthesization using at most

1.155 ⋅ 𝐶(1, 𝑛)

multiplications.


