UNI

"
Chapter 3

Dynamic Programming

FREIBURG

Algorithm Theory
WS 2018/19

Fabian Kuhn

Dynamic Programming (DP)

UNI
f

FREIBURG

DP =~ Recursion + Memoization

Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems

has to be solved again

Weighted interval scheduling: subproblems W (1), W (2), W(3), ...

runtime = #subproblems - time per subproblem

Algorithm Theory, WS 2018/19 Fabian Kuhn

Dynamic Programming

UNI
f

FREIBURG

,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is

simply looked up and returned
(without repeated computation!).

 Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Algorithm Theory, WS 2018/19 Fabian Kuhn 3

Dynamic Programming

UNI

FREIBURG

Dynamic programming / memoization can be applied if

* Optimal solution contains optimal solutions to sub-problems
(recursive structure)

* Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2018/19 Fabian Kuhn

Knapsack

UNI

FREIBURG

* nitems1,...,n, each item has weight w; and value v;
* Knapsack (bag) of capacity W

* Goal: pack items into knapsack such that total weight is at
most W/ and total value is maximized:

maxz V;
iES
s.t. SE€{1,...,n}and Ewi <Ww
iES

* E.g.:jobs of length w; and value v;, server available for W
time units, try to execute a set of jobs that maximizes the
total value

Algorithm Theory, WS 2018/19 Fabian Kuhn

Recursive Structure?

UNI
f

FREIBURG

* Optimal solution: O
e Ifne& 0:0PT(n) =0PT(n—1)

e Whatifn € 0?

— Taking n gives value v,
— But, n also occupies space w,, in the bag (knapsack)
— There is space for W — w,, total weight left!

OPT(n) = v,, + optimal solution with first n — 1 items
and knapsack of capacity W — w,,

Algorithm Theory, WS 2018/19 Fabian Kuhn

A More Complicated Recursion

UNI

FREIBURG

OPT(k, x): value of optimal solution with items 1, ..., k
and knapsack of capacity x

Recursion:

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI

Dynamic Programming Algorithm

FREIBURG

Set up table for all possible OPT(k, x)-values
* Assume that all weights w; are integers!

0O 1 2 3 w

Row i, column j:

OPT(i,j)

W N = O

n

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

UNI

Example

FREIBURG

« 8items: (3,2),(2,4),(4,1),(5,6),(3,3), 94,3% (5,4),(6,6)
Knapsack capacity: 12 weight value

* OPT(k,x) = max{OPT(k —1,x),0PT(k —1,x —wy) + v;}
1 2 3 4 5 6 7 8 9 101112

O N O U1 o W IN =

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

Running Time of Knapsack Algorithm

UNI
f

FREIBURG

 Size of table: O(n - W)
* Time per table entry: 0(1) > overall time: O0(nW)

 Computing solution (set of items to pick):
Follow < n arrows = 0(n) time (after filling table)

* Note: Time depends on W —> can be exponential in n...
 And itis problematic if weights are not integers.

Algorithm Theory, WS 2018/19 Fabian Kuhn

10

UNI
f

FREIBURG

String Matching Problems

Edit distance:

* For two given strings A and B, efficiently compute the
edit distance D(A, B) (# edit operations to transform A4 into B)

as well as a minimum sequence of edit operations that
transform A into B.

* Example: mathematician = multiplication:

ml{l_xf\ip{l_xi\tio//n

1 1cC

Algorithm Theory, WS 2018/19 Fabian Kuhn 11

Edit Distance

UNI
FREIBURG

Given: Two strings A = a,a, ...a,;, and B = b1b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A

c) Insert a character from string B into A

ma — t hem--aticdlan
mul¢tiplicatio--n

Algorithm Theory, WS 2018/19 Fabian Kuhn 13

Edit Distance — Cost Model

* Cost for replacing character a by b: c(a,b) = 0

e Capture insert, delete by allowinga = € or b = «:

— Cost for deleting character a: c(a, €)
— Cost for inserting character b: c(&, b)

* Triangle inequality:
c(a,c) <c(a,b) +c(b,c)

— each character is changed at most once!

1, ifa#b

* Unit cost model: c(a,b) = {O P

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI
f

FREIBURG

Recursive Structure

UNI

FREIBURG

Optimal “alignment” of strings (unit cost model)
bbcadfagikcem and abbagflrgikacc:

a g
1l rg

— C C Imn
a C C —

C

b b a g ft 1k
a b b - adit 1k

Consists of optimal “alignments” of sub-strings, e.g.:
-bbcagfa nd —glk-ccm
abb-adfl rgikacc-

Edit distance between A; ,,, = a; ...a;, and By, = by ... by:

D(A,B) = min{D(Ayx, B1,e) + D(Aks1m Besin)]

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

Computation of the Edit Distance

|
FRE:BURG

2
=
let A, =a, ...ay, By :=by...by, and
Dk,f = D(Akr B{’)
A |
b |
Algorithm Theory, WS 2018/19 Fabian Kuhn 16

Computation of the Edit Distance

UNI
f

FREIBURG

Three ways of ending an “alignment” between A, and By:

1. ay isreplaced by b,:
Dye = Dg_1,0-1 + c(ax, be)

2. ay is deleted:

Dye = Di_1,¢ + c(ay, &)

3. byisinserted:

Dy ¢ = Dy p—1 + c(&,by)

Algorithm Theory, WS 2018/19 Fabian Kuhn

17

Computing the Edit Distance

UNI
f

FREIBURG

* Recurrence relation (for k, ¥ = 1)

(Dy—1p-1 + c(ag, bp)) (Dy—1¢p-1+1/0
Dy,=min{Dy_1, +c(ay,e) ;=min{Dx_1, +1 !
Dy o—1 +c(eby) | Dke-1 +1 |

|
unit cost model

* Needtocompute D;;forall0 <i<k,0<j<¢:

Algorithm Theory, WS 2018/19 Fabian Kuhn 18

Recurrence Relation for the Edit Distance

UNI
f

FREIBURG

Base cases:

D0,0 = D(E, 8) =0

DO,j = D(E, B]) = DO,j—l + C(E, b])

D;o =D(A;, &) =D;_10 +c(a;e)

Recurrence relation:

(Dy_19-1 + c(ay, bp))
D;; =min<{ Dy, +c(ayé)

~"

\Dyrs—1 +c(gby))

Algorithm Theory, WS 2018/19 Fabian Kuhn

19

Order of solving the subproblems

|
FRE:BURG

2
=
b, b, b, b, b,
aq
a,
O / \
Di—l,j—l/ \ D1
Di_1,j / \Di,j
Algorithm Theory, WS 2018/19 Fabian Kuhn 20

Algorithm for Computing the Edit Distance .

Algorithm Edit-Distance

Input: 2stringsA=a,..a,,and B = b, ...b,
Output: matrix D = (D,;j)

1 D[0,0] := 0;

2fori:=1tomdo DJ[i,0] :=i;
3forj:=1tondoD|0,j] = j;
4fori:=1tomdo

5 forj:=1tondo

(D[i —1,j] +1 \
6 D[ij]=min{Dli,j—1] +1 .
\Dl — 1,] — 1] + C(ai,bj)}

Algorithm Theory, WS 2018/19 Fabian Kuhn 21

FRE:BURG

UNI

Example

UNI

FREIBURG

Algorithm Theory, WS 2018/19

Fabian Kuhn

22

Edit Operations

UNI
FREIBURG

a b a

O/ 1]| 2|3 5

b\ 1|1/ 1] 2 4
a|l 2|1 2|2 3
b|3 |2/ 1] 2 4
d| 4 |3 || 2] 2 4
a 54|33 3

Algorithm Theory, WS 2018/19 Fabian Kuhn

23

Computing the Edit Operations

UNI

FREIBURG

Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations

1 ifi = 0andj = 0 then return empty list

ifi #0and D[i,j] = D[i — 1,j] + 1 then
return Edit-Operations(i — 1,j) o ,delete a;“

2

3

4 elseifj # 0and D[i,j] = D[i,j — 1] + 1 then
5 return Edit-Operations(i,j — 1) o ,insert b;“
6
7
8

else //D[i,j] =D[i —1,j — 1] + c(a;, b))
if a; = b; then return Edit-Operations(i — 1,j — 1)
else return Edit-Operations(i — 1,j — 1) o ,replace a; by b;“

Initial call: Edit-Operations(m,n)

Algorithm Theory, WS 2018/19 Fabian Kuhn

24

Edit Operations

|
FREIBURG

a b C a
‘(t)t1<—z<—3<—4<—5
L,
111 1(24—34—4
—4N— 1 XS
21111 21| 2¢+3 |[3
b s
3 || 2 1&24—34—4
41} g 2 || 24344
SE IS S e
sl all3] 3] 3]|]3

Algorithm Theory, WS 2018/19

25

Edit Distance: Summary

UNI

FREIBURG

* Edit distance between two strings of length m and n can be
computed in O(mn) time.

e Obtain the edit operations:
— for each cell, store which rule(s) apply to fill the cell
— track path backwards from cell (m, n)
— can also be used to get all optimal “alignments”

* Unit cost model:
— interesting special case
— each edit operation costs 1

Algorithm Theory, WS 2018/19 Fabian Kuhn

26

UNI

Approximate String Matching

FREIBURG

Given: strings T = t;t, ... t,, (text)and P = pyp, ... p,, (pattern).

Goal: Find aninterval [r,s], 1 < r < s < n such that the sub-string
T, ¢ ==t ...tg is the one with highest similarity to the pattern P:

arg min D (TT,S, P)
1<r<s<n
r S
T /

Q

./

Algorithm Theory, WS 2018/19 Fabian Kuhn 27

Approximate String Matching

UNI
f

FREIBURG

Naive Solution:
foralll1 <r<s<ndo

compute D(T; g, P)

choose the minimum

Algorithm Theory, WS 2018/19

Fabian Kuhn

28

Approximate String Matching

UNI
f

FREIBURG

A related problem:

* For each position s in the text and each position i in the
pattern compute the minimum edit distance E(i, s) between
P; = p, ...p; and any substring T’. ¢ of T that ends at position s.

T S

P; =pg ..p;

E(i,s)

Algorithm Theory, WS 2018/19 Fabian Kuhn 29

Approximate String Matching

UNI

Three ways of ending optimal alignment between T, and P;:

1. t, isreplaced by p;:
Epi =Ep_1,;-1+ c(ty, pi)

2. tp is deleted:
Epi =Ep_q; + c(tp, &)

3. p;isinserted:

Ey; =Epi—q1 +c(ep;)

Algorithm Theory, WS 2018/19 Fabian Kuhn

30

FREIBURG

Approximate String Matching

Recurrence relation (unit cost model):

(Ep_1i-1+1/0)
Ep; = min- Ep ;i +1 ’
\Eb,i—l +1)

Base cases:

E0,0 —_ 0
EO,i — i
Ei,O — O

Algorithm Theory, WS 2018/19 Fabian Kuhn

31

UNI
f

FREIBURG

Example

UNI

FREIBURG

m a t h e m t i c S
AR A A A A A A
X \ T \\ Tj | \\
m < <
A AN A A A R N AN A
N B S S SR
u <
A A A A A AR R A A
N \ 1|J
l < <
A A A A A R A
_ < < <
t A A A A : xj_ A AR
_ N
l < < <

Algorithm Theory, WS 2018/19 Fabian Kuhn

32

Approximate String Matching

UNI

FREIBURG

e Optimal matching consists of optimal sub-matchings

* Optimal matching can be computed in O(mn) time

* Get matching(s):
— Start from minimum entry/entries in bottom row
— Follow path(s) to top row

* Algorithm to compute E (b, i) identical to edit distance
algorithm, except for the initialization of E (b, 0)

Algorithm Theory, WS 2018/19 Fabian Kuhn

33

Related Problems in Bioinformatics

UNI

FREIBURG

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
sequences.

GA-CGGATTASZG
GATCGGAAT -G

Global vs. Local Alignment:
* Global alignment: find optimal alignment of 2 sequences

* Local alignment: find optimal alignment of sequence 1
(patter) with sub-sequence of sequence 2 (text)

Algorithm Theory, WS 2018/19 Fabian Kuhn

34

