UNI

"
Chapter 3

Dynamic Programming

FREIBURG

Algorithm Theory
WS 2018/19

Fabian Kuhn

Dynamic Programming (DP)

UNI
f

FREIBURG

DP =~ Recursion + Memoization

Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems

has to be solved again

Weighted interval scheduling: subproblems W (1), W (2), W(3), ...

runtime = #subproblems - time per subproblem
e — e -

Algorithm Theory, WS 2018/19 Fabian Kuhn

Dynamic Programming

UNI
f

FREIBURG

,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is

simply looked up and returned
(without repeated computation!).

 Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Algorithm Theory, WS 2018/19 Fabian Kuhn 3

Dynamic Programming

UNI

FREIBURG

Dynamic programming / memoization can be applied if

* Optimal solution contains optimal solutions to sub-problems
(recursive structure)

* Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2018/19 Fabian Kuhn

Knapsack

UNI

FREIBURG

* nitems],...,n, each item has weight w; and value v;

* Knapsack (E)Ta__g) of capacity W

* Goal: pack items into knapsack such that total weight is at
most W/ and total value is maximized:

max z V;

IES
—_——

s.t. SE€{1,...,n}and Ewi < W(
& |

* E.g.:jobs of length w; and value v;, server available for W
time units, try to execute a set of jobs that maximizes the
total value

Algorithm Theory, WS 2018/19 Fabian Kuhn

Recursive Structure? OFTC:

————

UNI
f

FREIBURG

* Optimal solution: O

——

e Ifne& 0:0PT(n) =0PT(n—1)

e Whatifn € 0?

— Taking n gives value v,
-

— But, n also occupies space w,, in the bag (knapsack)

—

— There is space for|W — Wy, fotal weight left!

OPT(n) = v,, + optimal solution with first n — 1 items
= _and knapsack of capacity W — w,,

Lot S..\S}— O?TCM "')

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI

A More Complicated Recursion

FREIBURG

OPT(k, x): value of optimal solution with items 1, ..., k

and knapsack of capacity x O nolas 2052
TIRBN b"(" orPT(u, W) 9 {70
Recursion: S
OPTCir)= wax 0TG4,) , v, + OPT(kety 29
op! - 2ol wlessa MBuginieg Cafl:
lﬂf- ks:ab ew
(u.‘kau-‘q‘-ﬁ’k&“t #Sub?wu-ﬁw?
Z“ N P-ard
oPT(0 X) - 0O arlp'.kmoh we)‘%(‘(-s =
’ tuleger wesglds : [__W
assume ot weidds are nleges
0FT(L, O = O “ 2 >
;@M,O(m-b\))
\

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

Dynamic Programming Algorithm

UNI
f

FREIBURG

Set up table for all possible OPT(k, x)-values

* Assume that all weights w; are>integers!

X
0 1 2 3 \ow _ ,
Row i, column j:
019 [0 |© |- —1 |— | © o
1 16 - OPT(i,j)
2 |0 IS
3| I 2 S
|
| N af
| (-/‘ \\-90& J | &y 0
2o T \ = wakd 0P k-1, x)/

Algorithm Theory, WS 2018/19

v, +GT;(E-Lx -w,)

Fabian Kuhn

8

Example

UNI
FREIBURG

* 8items: (3 2),(2, 4) (4,1),(5,6), (3,3), 94 3% (5,4),(6,6)

Knapsack capaC|ty 12 weight value

e OPT(k,x) = max{OPT(k —1,x),0PT(k —1,x —wy) + vy}

1 2 3 4 5 6 7 8 9 101112

i"* Olzl2]|l 2l2]| 2| 2|2l 2| 2| =

9
L\gﬁg\\\
ol4 |4 |4]c|elée] 11 -

R N & U1 » W N

Algorithm Theory, WS 2018/19 Fabian Kuhn

=2 <

UNI

Running Time of Knapsack Algorithm

FREIBURG

 Size of table: O(n - W)
* Time per table entry: 0(1) > overall time: O0(nW)

 Computing solution (set of items to pick):
Follow < n arrows = 0(n) time (after filling table)

* Note: Time depends on W —> can be exponential in n...

* And itis problematic if weights are not integers.
sl ?o%ib(o. { waogds are redioual

auoterr sazo“q(coge values arc\o\eyu'ﬁ OPT(k} ‘%7

. WP lor li

e

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

String Matching Problems

UNI
f

FREIBURG

Edit distance:

* For two given strings A and B, efficiently compute the

edit distance D(A, B) (# edit operations to transform A4 into B)

as well as a minimum sequence of edit operations that
transform A into B.

* Example: mathematician = multiplication:

ml;l_k_t\lp{l_ki\tlo//n

1 1cC 10 ops-

Algorithm Theory, WS 2018/19 Fabian Kuhn 11

Edit Distance

UNI
FREIBURG

Given: Two strings A = a,a, ...a,;, and B = b1b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A

c) Insert a character from string B into A

£

ma - t hem--atician
Lo . . . ! a(hhum&
mu l ti1pli1i1catio--n

Algorithm Theory, WS 2018/19 Fabian Kuhn 13

Edit Distance — Cost Model

* Cost for replacing character a by b: c(a,b) = 0

* Capture insert, delete by allowinga = cor b = &:

— Cost for deleting character a: c(a, €)
— Cost for inserting character b: c(&, b)

* Triangle inequality:

c(a,c) <c(a,b) +c(b,c)

— each character is changed at most once!

1, ifa#b

* Unit cost model: c(a,b) = {O P

Algorithm Theory, WS 2018/19 Fabian Kuhn

|
FRE:BURG

UNI

Recursive Structure

UNI
f

FREIBURG

* Optimal “alighment” of strings (unit cost model)

bbcadfagikcem and abbagflrgikacc:

g‘f al- g1 k - ccm
d £ 1 r‘g ikacec-
£

a
a
* Consists of optimal “alignments” of sub-strings, e.g.:

-bbcagfa nd —glk-ccm
abb-adfl rgikacc-

* Edit distance between A; ,,, = a; ...a, and By, = by ... by:

D(4,B) = min{D(As 4, B1e) + D(Aks1m Besin)}

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

Computation of the Edit Distance

|
FRE:BURG

UNI

let A, =a, ...ay, By :=by...by, and

Dk,f = Q(AkrBf)

. ":‘
B “////x//// 2
. (|

QrJ ccg" : ,,D&(

Algorithm Theory, WS 2018/19 Fabian Kuhn

16

Computation of the Edit Distance

Three ways of ending an “alignment” between A, and By:

1. ay isreplaced by b,:

Dy ¢ = Dy_qp—1 + c(ag, by)

2. ay is deleted:

Dye = Di—1,¢ + c(ay, &)

—p———

3. byisinserted:

Die = Dio—1 + c(e, by)

/

Algorithm Theory, WS 2018/19

Fabian Kuhn

A,

— —~a,
4 2.
— ﬁ-b(

A,
- 'lqk
d 4 Be //// '
—) -
A |
— 1=
L/// 'gz-‘ / ///Jbl
— 1 Bg

17

UNI
f

FREIBURG

Computing the Edit Distance

UNI
f

FREIBURG

* Recurrence relation (for k, ¥ = 1)

/

(Dy—1p-1 + c(ag, bp)) (Dy—14p-1+1/0)
Dy,=min{Dy_1, +c(ay,e) ;=min{Dx_1, +1 Y
Dy o—1 +c(eby) | Dke-1 +1 |

|
unit cost model

* Needtocompute D;;forall0 <i<k,0<j<¢:

Algorithm Theory, WS 2018/19 Fabian Kuhn 18

Recurrence Relation for the Edit Distance

UNI
f

FREIBURG

Base cases:

DO,O — D(EJ 8) :_2, uur"/- (,@'>J'.‘
DO,j = D(E, B]) = DO,j—l + C(E, b]) ‘
Diy = D(A; &) =Dj_10+c(a;)

Do'i =)
@{lo = £
Recurrence relation:

(D1 -1 + c(ag, by
D;; =min<{ Dy, +c(ayé)
\Dyrs—1 +c(gby))

~"

Algorithm Theory, WS 2018/19 Fabian Kuhn

19

Order of solving the subproblems

UNI
f

FREIBURG

b, b, b, b,

Algorithm Theory, WS 2018/19 Fabian Kuhn

20

Algorithm for Computing the Edit Distance .

Algorithm Edit-Distance

Input: 2stringsA=a,..a,,and B = b, ...b,
Output: matrix D = (D,;j)

1 D[0,0] := 0;

2fori:=1tomdo DJ[i,0] :=i;
3forj:=1tondoD|0,j] = j;
4fori:=1tomdo

5 forj:=1tondo

(D[i —1,j] +1 \
6 D[ij]=min{Dli,j—1] +1 .
\Dl — 1,] — 1] + C(ai,bj)}

Algorithm Theory, WS 2018/19 Fabian Kuhn 21

FRE:BURG

UNI

Example
a b c C .

— = |lo|l L [|2]|3]| 4%

b :!\ 1 T | -2 3«

a| 2

b |5

d| 4

al|S
Algorithm Theory, WS 2018/15 cabian Kuhr 2

Edit Operations

UNI
FREIBURG

a b a

O/ 1]| 2|3 5

b\ 1|1/ 1] 2 4
a|l 2|1 2|2 3
b|3 |2/ 1] 2 4
d| 4 |3 || 2] 2 4
a 54|33 3

Algorithm Theory, WS 2018/19 Fabian Kuhn

23

Computing the Edit Operations

UNI

FREIBURG

Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations

1 ifi = 0andj = 0 then return empty list

ifi #0and D[i,j] = D[i — 1,j] + 1 then
return Edit-Operations(i — 1,j) o ,delete a;“

2

3

4 elseifj # 0and D[i,j] = D[i,j — 1] + 1 then
5 return Edit-Operations(i,j — 1) o ,insert b;“
6
7
8

else //D[i,j] =D[i —1,j — 1] + c(a;, b))
if a; = b; then return Edit-Operations(i — 1,j — 1)
else return Edit-Operations(i — 1,j — 1) o ,replace a; by b;“

Initial call: Edit-Operations(m,n)

Algorithm Theory, WS 2018/19 Fabian Kuhn

24

|
- [gt:[EP-F]
INN

Edit Operations

25

Fabian Kuhn

Algorithm Theory, WS 2018/19

Edit Distance: Summary

UNI

FREIBURG

* Edit distance between two strings of length m and n can be
computed in O(mn) time.

e Obtain the edit operations:
— for each cell, store which rule(s) apply to fill the cell
— track path backwards from cell (m, n)
— can also be used to get all optimal “alignments”

* Unit cost model:
— interesting special case
— each edit operation costs 1

Algorithm Theory, WS 2018/19 Fabian Kuhn

26

UNI

Approximate String Matching

FREIBURG

Given: strings T = t;t, ... t,, (text)and P = pyp, ... p,, (pattern).

—— v ———————————

Goal: Find aninterval [r,s], 1 < r < s < n such that the sub-string
T, ¢ ==t ...tg is the one with highest similarity to the pattern P:

arg min D (Tr S) P)

1<rs<ssn

|
T
P/

Q

Algorithm Theory, WS 2018/19 Fabian Kuhn 27

Approximate String Matching

UNI
FREIBURG

Naive Solution:

D o -
foralllS’rSSSndo(x“

compute D(Ty5, P) cosl: O((s-7+m) = OCu -w)
choose the minimum

— > pvaall 1 O(W W)

st Cau be ‘\.u‘mgd » &X neud)

Algorithm Theory, WS 2018/19 Fabian Kuhn 28

Approximate String Matching

UNI
f

FREIBURG

A related problem:

* For each position s in the text and each position i in the
pattern compute the minimum edit distance E (i, s) between
P; = p, ...p; and any substring T’. ¢ of T that ends at position s.

r ®

P =p1 .. p;

E(i,s)

Algorithm Theory, WS 2018/19 Fabian Kuhn 29

Approximate String Matching

UNI
f

FREIBURG

Three ways of ending optimal alignment between T, and P;:

1. t, isreplaced by p;:

Ey; =Ep_1i_1+c(ty, i) Y.

2. tp is deleted:
Epi =Ep_q; + c(tp, &)

3. p;isinserted:

Ey; =Epi—q1 +c(ep;)

Algorithm Theory, WS 2018/19 Fabian Kuhn

30

Approximate String Matching

UNI
f

FREIBURG

Recurrence relation (unit cost model):

(Ep_1i-1+1/0)
Ep; = min- Ep ;i +1 ’
\Eb,i—l +1)

Base cases:

E0,0 —_ O
EO,i :i
| Eip =0 -
) r (X
l a:
s

Algorithm Theory, WS 2018/19 Fabian Kuhn

31

Algorithm Theory, WS 2018/19

mathe|w a - ¥ l:lcs
mu €+

Fabian Kuhn 32

(o, <) %
Example B
m a t h e m a t i cC S
A X A ? E N A N\ A N\
X \ T \\ Tj | \\
m < <
A AN A A AN R _A_‘\ A
S S
u < <
A A A A A AR A N A A
N \ 1|J
l < <
A A A A A A R A
| < < <€
t AN AN A A : J_ A AN A N
_ AN
i < J 3[— <
N/

Approximate String Matching

UNI

FREIBURG

e Optimal matching consists of optimal sub-matchings
* Optimal matching can be computed in O(mn) time

* Get matching(s):
— Start from minimum entry/entries in bottom row
— Follow path(s) to top row

* Algorithm to compute E (b, i) identical to edit distance
algorithm, except for the initialization of E (b, 0)

Algorithm Theory, WS 2018/19 Fabian Kuhn

33

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
sequences.

CISL‘A—CGGATTAG

GATCGGAAT -G

Global vs. Local Alignment:
* Global alignment: find optimal alignment of 2 sequences

* Local alignment: find optimal alignment of sequence 1
(patter) with sub-sequence of sequence 2 (text)

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI
f

FREIBURG

