

Chapter 3 Dynamic Programming

Algorithm Theory WS 2018/19

Fabian Kuhn

Dynamic Programming (DP)

$DP \approx Recursion + Memoization$

Recursion: Express problem *recursively* in terms of (a 'small' number of) *subproblems* (of the same kind)

Memoize: Store solutions for subproblems reuse the stored solutions if the same subproblems has to be solved again

Weighted interval scheduling: subproblems W(1), W(2), W(3), ...

runtime = #subproblems · time per subproblem

Dynamic Programming

"Memoization" for increasing the efficiency of a recursive solution:

 Only the *first time* a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned

(without repeated computation!).

 Computing the solution: For each sub-problem, store how the value is obtained (according to which recursive rule).

Dynamic Programming

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Knapsack

- <u>n items 1, ..., n</u>, each item has weight w_i and value v_i
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most W and total value is maximized:

$$\max \sum_{i \in S} v_i$$
s.t. $S \subseteq \{1, ..., n\}$ and
$$\sum_{i \in S} w_i \leq W$$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

Recursive Structure?

OPT(K):

- Optimal solution: <u>O</u>
- If $n \notin \mathcal{O}$: OPT(n) = OPT(n-1)
- What if $n \in \mathcal{O}$?
 - Taking n gives value v_n
 - But, n also occupies space w_n in the bag (knapsack)
 - There is space for $W w_n$ total weight left!

$$\underbrace{\mathsf{OPT}(n)}_{} = v_n + \text{optimal solution with first } n-1 \text{ items}$$

$$\underbrace{\mathsf{and knapsack of capacity}}_{} W - w_n$$

A More Complicated Recursion

OPT(k, x): value of optimal solution with items 1, ..., k

and knapsack of capacity x

Recursion:

and knapsack of capacity
$$x$$

wain soal! OPT(u, W)

Recursion:

OPT(k, x) = wax $\left\{ \begin{array}{c} OPT(k-1, x) \\ opt. sol. when \\ uot using item k \end{array} \right\}$

The analysis sense

that it a literation $\frac{1}{2} \left\{ \begin{array}{c} ap \\ bp \end{array} \right\}$

The subproblems?

$$OPT(0, x) = 0$$

Dynamic Programming Algorithm

Set up table for all possible OPT(k, x)-values

• Assume that all weights w_i are integers!

Example

- 8 items: (3,2), (2,4), (4,1), (5,6), (3,3), (4,3), (5,4), (6,6) Knapsack capacity: 12 weight value
- $OPT(k, x) = \max\{OPT(k-1, x), OPT(k-1, x-w_k) + v_k\}$

7,5

Running Time of Knapsack Algorithm

- Size of table: $O(n \cdot W)$
- Time per table entry: $O(1) \rightarrow$ overall time: O(nW)
- Computing solution (set of items to pick): Follow $\leq n$ arrows $\rightarrow O(n)$ time (after filling table)
- Note: Time depends on $W \rightarrow$ can be exponential in n...
- And it is problematic if weights are not integers.

String Matching Problems

Edit distance:

- For two given strings A and B, efficiently compute the edit distance D(A, B) (# edit operations to transform A into B) as well as a minimum sequence of edit operations that transform A into B.
- Example: mathematician → multiplication:

Edit Distance

Given: Two strings $A=a_1a_2\dots a_m$ and $B=b_1b_2\dots b_n$

Goal: Determine the minimum number D(A, B) of edit operations required to transform A into B

Edit operations:

- a) Replace a character from string A by a character from B
- **b) Delete** a character from string A
- c) Insert a character from string B into A

Edit Distance – Cost Model

- Cost for **replacing** character a by $b: \underline{c(a, b)} \ge 0$
- Capture insert, delete by allowing $a = \underline{\varepsilon}$ or $b = \varepsilon$:
 - Cost for **deleting** character $a: c(\underline{a}, \underline{\varepsilon})$
 - Cost for **inserting** character $b: c(\varepsilon, b)$
- Triangle inequality:

$$\underline{c(a,c)} \le c(a,b) + c(b,c)$$

→ each character is changed at most once!

• Unit cost model:
$$c(a,b) = \begin{cases} 1, & \text{if } a \neq b \\ 0, & \text{if } a = b \end{cases}$$

Recursive Structure

Optimal "alignment" of strings (unit cost model)

bbcadfagikccm **and** abbagflrgikacc:

Consists of optimal "alignments" of sub-strings, e.g.:

-bbcagfa and
$$-gik-ccm$$
 abb-adfl rgikacc-

• Edit distance between $A_{1,m}=a_1\dots a_m$ and $B_{1,n}=b_1\dots b_n$:

$$D(A,B) = \min_{k,\ell} \{ D(A_{1,k}, B_{1,\ell}) + D(A_{k+1,m}, B_{\ell+1,n}) \}$$

Computation of the Edit Distance

Let
$$A_k \coloneqq \underline{a_1 \dots a_k}$$
 , $B_\ell \coloneqq \underline{b_1 \dots b_\ell}$, and
$$\underline{D_{k,\ell}} \coloneqq \underline{D(A_k,B_\ell)}$$

Computation of the Edit Distance

Three ways of ending an "alignment" between A_k and B_ℓ :

1. a_k is replaced by b_ℓ :

$$D_{k,\ell} = D_{k-1,\ell-1} + c(a_k, b_\ell)$$

2. a_k is deleted:

$$D_{k,\ell} = D_{k-1,\ell} + \underline{c(a_k, \varepsilon)}$$

3. b_{ℓ} is inserted:

$$D_{k,\ell} = D_{k,\ell-1} + c(\varepsilon, b_{\ell})$$

Computing the Edit Distance

• Recurrence relation (for $k, \ell \geq 1$)

$$D_{k,\ell} = \min \begin{cases} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{cases} = \min \begin{cases} D_{k-1,\ell-1} + 1 / 0 \\ D_{k-1,\ell} + 1 \\ D_{k,\ell-1} + 1 \end{cases}$$

unit cost model

• Need to compute $D_{i,j}$ for all $0 \le i \le k$, $0 \le j \le \ell$:

Recurrence Relation for the Edit Distance

Base cases:

$$\begin{aligned}
D_{0,0} &= D(\varepsilon, \varepsilon) = \underline{0} \\
\overline{D_{0,j}} &= D(\varepsilon, B_j) = D_{0,j-1} + c(\varepsilon, b_j) \\
\overline{D_{i,0}} &= D(A_i, \varepsilon) = D_{i-1,0} + c(a_i, \varepsilon)
\end{aligned}$$

Recurrence relation:

$$egin{aligned} egin{aligned} oldsymbol{D_{k-1,\ell-1}} + oldsymbol{c}(oldsymbol{a_k,\ell-1}) + oldsymbol{c}(oldsymbol{a_k,\ell-1}) + oldsymbol{c}(oldsymbol{a_k,\ell-1}) + oldsymbol{c}(oldsymbol{e_k,\ell-1}) \end{aligned}$$

Order of solving the subproblems

Algorithm for Computing the Edit Distance

Algorithm *Edit-Distance*

Input: 2 strings
$$A = a_1 \dots a_m$$
 and $B = b_1 \dots b_n$

Output: matrix
$$D = (D_{ij})$$

$$1 D[0,0] := 0;$$

2 for
$$i := 1$$
 to m do $D[i, 0] := i$;

3 for
$$j := 1$$
 to n do $D[0, j] := j$;

4 for
$$i := 1$$
 to m do

5 for
$$j := 1$$
 to n do

6
$$D[i,j] := \min \begin{cases} D[i-1,j] + 1 \\ D[i,j-1] + 1 \\ D[i-1,j-1] + c(a_i,b_i) \end{cases}$$
;

Example

Edit Operations

Computing the Edit Operations


```
Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations
1 if i = 0 and j = 0 then return empty list
2 if i \neq 0 and D[i,j] = D[i-1,j] + 1 then
     return Edit-Operations(i-1,j) \circ "delete a_i"
4 else if j \neq 0 and D[i,j] = D[i,j-1] + 1 then
     return Edit-Operations(i, j - 1) \circ ,, insert b_i"
5
  else //D[i,j] = D[i-1,j-1] + c(a_i,b_i)
     if a_i = b_i then return Edit-Operations (i-1, j-1)
     else return Edit-Operations(i-1, j-1) \circ "replace a_i by b_i"
8
```

Initial call: *Edit-Operations*(*m*,*n*)

Edit Operations

Edit Distance: Summary

• Edit distance between two strings of length m and n can be computed in O(mn) time.

- Obtain the edit operations:
 - for each cell, store which rule(s) apply to fill the cell
 - track path backwards from cell (m, n)
 - can also be used to get all optimal "alignments"
- Unit cost model:
 - interesting special case
 - each edit operation costs 1

Given: strings $T = t_1 t_2 \dots t_n$ (text) and $P = p_1 p_2 \dots p_m$ (pattern).

Goal: Find an interval [r, s], $1 \le r \le s \le n$ such that the sub-string $T_{r,s} := t_r \dots t_s$ is the one with highest similarity to the pattern P:

$$\underset{1 \le r \le s \le n}{\operatorname{arg min}} D(T_{r,s}, P)$$

Naive Solution:

for all
$$1 \le r \le s \le n$$
 do

compute $D(T_{r,s}, P)$ cost: $O((s-r) \cdot m) = O(n \cdot m)$

choose the minimum

 $\longrightarrow \text{overall}: O(n^3 \cdot m)$

unit cost: Can be improved to $O(n \cdot m^3)$

A related problem:

• For each position s in the text and each position i in the pattern compute the minimum edit distance E(i,s) between $P_i = p_1 \dots p_i$ and any substring $T_{r,s}$ of T that ends at position s.

Three ways of ending optimal alignment between T_b and P_i :

1. t_b is replaced by p_i :

$$E_{b,i} = E_{b-1,i-1} + c(t_b, p_i)$$

2. t_b is deleted:

$$E_{b,i} = E_{b-1,i} + c(t_b, \varepsilon)$$

3. p_i is inserted:

$$E_{b,i} = E_{b,i-1} + c(\varepsilon, p_i)$$

Recurrence relation (unit cost model):

$$E_{b,i} = \min egin{cases} E_{b-1,i-1} + 1 / 0 \ E_{b-1,i} + 1 \ E_{b,i-1} + 1 \end{pmatrix}$$

Base cases:

$$E_{0,0} = 0$$

$$E_{0,i} = i$$

$$E_{i,0} = 0$$

Example

- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in O(mn) time
- Get matching(s):
 - Start from minimum entry/entries in bottom row
 - Follow path(s) to top row
- Algorithm to compute E(b,i) identical to edit distance algorithm, except for the initialization of E(b,0)

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

Global vs. Local Alignment:

- Global alignment: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1
 (patter) with sub-sequence of sequence 2 (text)