

Chapter 4 Amortized Analysis

Algorithm Theory WS 2018/19

Fabian Kuhn

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T := t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

- Best case
- Worst case
- Average case
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Example 1: Augmented Stack

Stack Data Type: Operations

• $S.\operatorname{push}(x)$: inserts x on top of stack

• S.pop() : removes and returns top element

Complexity of Stack Operations

• In all standard implementations: O(1)

Additional Operation

- S.multipop(k): remove and return top k elements
- Complexity: O(k)
- What is the amortized complexity of these operations?

Augmented Stack: Amortized Cost

Amortized Cost

- Sequence of operations i = 1, 2, 3, ..., n
- Actual cost of op. i: t_i
- Amortized cost of op. i is a_i if for every possible seq. of op.,

$$T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i$$

Actual Cost of Augmented Stack Operations

- S.push(x), S.pop(): actual cost $t_i = O(1)$
- $S. \operatorname{multipop}(k)$: actual cost $t_i = O(k)$
- Amortized cost of all three operations is constant
 - The total number of "popped" elements cannot be more than the total number of "pushed" elements: cost for pop/multipop ≤ cost for push

Augmented Stack: Amortized Cost

Amortized Cost

$$T = \sum_{i} t_i \le \sum_{i} a_i$$

Actual Cost of Augmented Stack Operations

- S.push(x), S.pop(): actual cost $t_i \le c$
- S. multipop(k) : actual cost $t_i \le c \cdot k$

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost	
	00000		
1	00001	1	
2	000 10	2	
3	0001 <mark>1</mark>	1	
4	00 100	3	
5	0010 <mark>1</mark>	1	
6	001 10	2	
7	0011 <mark>1</mark>	1	
8	01000	4	
9	0100 <mark>1</mark>	1	
10	010 10	2	
11	0101 <mark>1</mark>	1	
12	01 100	3	
13	0110 <mark>1</mark>	1	

Accounting Method

Observation:

Each increment flips exactly one 0 into a 1

 $00100011111 \Rightarrow 0010010000$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
 - → We always have enough "money" to pay!

Accounting Method

Op.	Counter	Cost	To Bank	From Bank	Net Cost	Credit
	00000					
1	00001	1				
2	00010	2				
3	00011	1				
4	00100	3				
5	00101	1				
6	00110	2				
7	00111	1				
8	01000	4				
9	01001	1				
10	01010	2				