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Amortization
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* Consider sequence 04, 0y, ..., 0, of n operations
(typically performed on some data structure D)

* L execution time of operation 9
T := t1 + tz + --- + t,,: total execution time

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive
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Analysis of Algorithms
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What is the average cost of an operation
in a worst case sequence of operations?
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Stack Data Type: Operations
 S.push(x) :inserts x on top of stack

e S.pop() : removes and returns top element

Complexity of Stack Operations
* In all standard implementations: O(1)

Additional Operation
* S.multipop(k) : remove and return top k elements

. Eomplexity: 0 (k)

 What is the amortized complexity of these operations?
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Augmented Stack: Amortized Cost
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Amortized Cost
 Sequence of operationsi =1,2,3,...,n

* Actual cost of op. i: ¢;

 Amortized cost of o?i is a; if for every possible seq.

n
iSZai
==

n
t
=1 =1

T =

Actual Cost of Augmented Stack Operations
* S.push(x), S.pop(): actual cost t; = 0(1)
: actual cost t; = 0(k)

P—— 1}

 Amortized cost of all three operations is constant

* S.multipop(k)

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push
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Augmented Stack: Amortized Cost
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Amortized Cost
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Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actualcostt; <c
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ractualcostt; < c-k

* S.multipop(k)
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Example 2: Binary Counter

UNI
FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
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Accounting Methaod
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Observation:
* Eachincrement flips exactlyoneOintoa 1

0010001111 = 0010010000

Idea:

* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x

* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay 1 to bank account (cost: 2)
* Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!
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Accounting Method
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Op. | Counter | Cost To Bank | From Bank Net Cost Credit
00000 O

1 100001 1 | o, 2 [

2 /00010 2 | [ 2 l

3 00011 1 [ O 2 2

4 100100 3 | 2 2 [

5 00101 1 | O 2 ya

6 00110 2 ( [ 2 2

7 00111 1 ( @) 2 S

8 |01000| 4 | 3 2 I

9 |01001 1 [ @) 2 2

10 | 01010 ;2/5. 4 . L.',’— ,v%,\.o \(2_\)

cC+ 38 =~ % = A z 9
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