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Amortization

• Consider sequence 𝑜1, 𝑜2, … , 𝑜𝑛 of 𝑛 operations
(typically performed on some data structure 𝐷)

• 𝒕𝒊: execution time of operation 𝑜𝑖
• 𝑻 ≔ 𝒕𝟏 + 𝒕𝟐 +⋯+ 𝒕𝒏: total execution time

• The execution time of a single operation might

vary within a large range (e.g., 𝑡𝑖 ∈ [1, 𝑂 𝑖 ])

• The worst case overall execution time might still be small

 average execution time per operation might be small in
the worst case, even if single operations can be expensive
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Analysis of Algorithms

• Best case

• Worst case

• Average case

• Amortized worst case

What is the average cost of an operation
in a worst case sequence of operations?
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Example 1: Augmented Stack

Stack Data Type: Operations

• 𝑆. push(𝑥) : inserts 𝑥 on top of stack

• 𝑆.pop() : removes and returns top element

Complexity of Stack Operations

• In all standard implementations: 𝑂 1

Additional Operation

• 𝑺.multipop(𝒌)  : remove and return top 𝑘 elements

• Complexity: 𝑂 𝑘

• What is the amortized complexity of these operations?
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Augmented Stack: Amortized Cost

Amortized Cost

• Sequence of operations 𝑖 = 1, 2, 3,… , 𝑛

• Actual cost of op. 𝑖: 𝒕𝒊
• Amortized cost of op. 𝑖 is 𝒂𝒊 if for every possible seq. of op.,

𝑇 =

𝑖=1

𝑛

𝑡𝑖 ≤

𝑖=1

𝑛

𝑎𝑖

Actual Cost of Augmented Stack Operations

• 𝑆. push 𝑥 , 𝑆. pop(): actual cost 𝑡𝑖 = 𝑂(1)

• 𝑆.multipop 𝑘 : actual cost 𝑡𝑖 = 𝑂 𝑘

• Amortized cost of all three operations is constant
– The total number of “popped” elements cannot be more than the total 

number of “pushed” elements: cost for pop/multipop ≤ cost for push
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Augmented Stack: Amortized Cost

Amortized Cost

𝑇 =

𝑖

𝑡𝑖 ≤ 

𝑖

𝑎𝑖

Actual Cost of Augmented Stack Operations

• 𝑆. push 𝑥 , 𝑆. pop(): actual cost 𝑡𝑖 ≤ 𝑐

• 𝑆.multipop 𝑘 : actual cost 𝑡𝑖 ≤ 𝑐 ⋅ 𝑘
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Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:
Operation Counter Value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111 1

8 01000 4

9 01001 1

10 01010 2

11 01011 1

12 01100 3

13 01101 1
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Accounting Method

Observation:

• Each increment flips exactly one 0 into a 1

00100𝟎1111 ⟹ 00100𝟏0000

Idea:

• Have a bank account (with initial amount 0)

• Paying 𝑥 to the bank account costs 𝑥

• Take “money” from account to pay for expensive operations

Applied to binary counter:

• Flip from 0 to 1: pay 1 to bank account (cost: 2)

• Flip from 1 to 0: take 1 from bank account (cost: 0)

• Amount on bank account = number of ones
We always have enough “money” to pay!
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Accounting Method

Op. Counter Cost To Bank From Bank Net Cost Credit

0 0 0 0 0

1 0 0 0 0 1 1

2 0 0 0 1 0 2

3 0 0 0 1 1 1

4 0 0 1 0 0 3

5 0 0 1 0 1 1

6 0 0 1 1 0 2

7 0 0 1 1 1 1

8 0 1 0 0 0 4

9 0 1 0 0 1 1

10 0 1 0 1 0 2


