Chapter 4
Amortized Analysis

Algorithm Theory
WS 2018/19

Fabian Kuhn

UNI

FREIBURG

Amortization

UNI
f

FREIBURG

* Consider sequence 04, 0y, ..., 0, of n operations
(typically performed on some data structure D)

* L execution time of operation 9
T := t1 + tz + --- + t,,: total execution time

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2018/19 Fabian Kuhn 2

Analysis of Algorithms

UNI
f

FREIBURG

* Best case
i

°\ Worst caseS

rauoqo'“
l///
. Bverage C@ M‘“}“}g (H“ﬂ '&mf a "cum\ca(;m(uJ‘

. “Amorti@M

What is the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2018/19 Fabian Kuhn 3

UNI

Example 1: Augmented Stack

FREIBURG

Stack Data Type: Operations
 S.push(x) :inserts x on top of stack

e S.pop() : removes and returns top element

Complexity of Stack Operations
* In all standard implementations: O(1)

Additional Operation
* S.multipop(k) : remove and return top k elements

. Eomplexity: 0 (k)

 What is the amortized complexity of these operations?

Algorithm Theory, WS 2018/19 Fabian Kuhn 4

Augmented Stack: Amortized Cost

UNI

FREIBURG

Amortized Cost
 Sequence of operationsi =1,2,3,...,n

* Actual cost of op. i: ¢;

 Amortized cost of o?i is a; if for every possible seq.

n
iSZai
==

n
t
=1 =1

T =

Actual Cost of Augmented Stack Operations
* S.push(x), S.pop(): actual cost t; = 0(1)
: actual cost t; = 0(k)

P—— 1}

 Amortized cost of all three operations is constant

* S.multipop(k)

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push

Algorithm Theory, WS 2018/19 Fabian Kuhn

of op.,

5

Augmented Stack: Amortized Cost

UNI

FREIBURG

Amortized Cost
DYDY
i i

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actualcostt; <c

—_—
E—

ractualcostt; < c-k

* S.multipop(k)

W opemdsas
? S n ‘)us(a ors. '\‘0“6\\ (J““l" C"J' < c‘f\)

dotel Hdof. elom. £y Ll Qef/muu%qop cost € cP

’\Ol'a.\ (a;‘\‘ € Z‘C'?

2 .c] c-
ava.ce}?«eg-sg?s CET— c

n Y —

Algorithm Theory, WS 2018/19 Fabian Kuhn

Example 2: Binary Counter

UNI
FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory, WS 2018/19 Fabian Kuhn

TINEEERLARE
g0 - — — .O

Accounting Methaod

UNI
FREIBURG

Observation:
* Eachincrement flips exactlyoneOintoa 1

0010001111 = 0010010000

Idea:

* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x

* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay 1 to bank account (cost: 2)
* Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

Accounting Method

UNI
f

FREIBURG

Op. | Counter | Cost To Bank | From Bank Net Cost Credit
00000 O

1 100001 1 | o, 2 [

2 /00010 2 | [2 l

3 00011 1 [O 2 2

4 100100 3 | 2 2 [

5 00101 1 | O 2 ya

6 00110 2 ([2 2

7 00111 1 (@) 2 S

8 |01000| 4 | 3 2 I

9 |01001 1 [@) 2 2

10 | 01010 ;2/5. 4 . L.',’— ,v%,\.o \(2_\)

cC+ 38 =~ % = A z 9

Algorithm Theory, WS 2018/19 lebi?n Kuhn C S A 9

