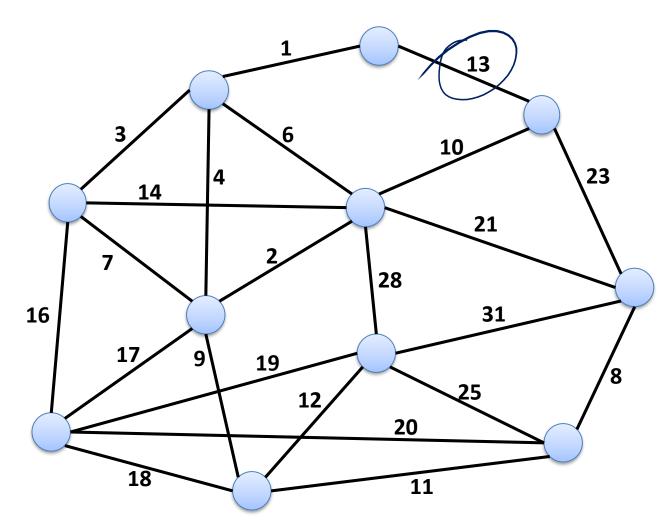


Chapter 5 Data Structures

Algorithm Theory WS 2018/19

Fabian Kuhn

Kruskal Algorithm



1. Start with an empty edge set

2. In each step: Add minimum weight edge *e* such that *e* does *not* close a cycle

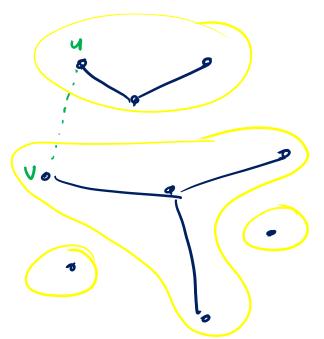
Implementation of Kruskal Algorithm

O(m·logn)

- Go through edges in order of increasing weights 1. (if weights are nice this might be faster)
 - sort edges by weight

2. For each edge *e*: e= \$4, v}

> if e does not close a cycle then need to check whether e closes a cycle

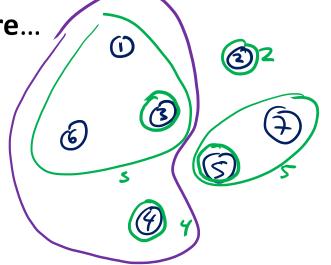


Union-Find Data Structure

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements

• set of disjoint sets



Operations:

- make_set(x): create a new set that only contains element x
- find(x): return the set containing x (sets have identifiers)
- union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

- Initialization:
 For each node v: make_set(v)
- Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

if $find(u) \neq find(v)$ then

add e to the current solution **union**(u, v)

Managing Connected Components

 Union-find data structure can be used more generally to manage the connected components of a graph

... if edges are added incrementally

- make_set(v) for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v
 (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

FREIBURG

Representation of sets:

 Every set S of the partition is identified with a representative, by one of its members x ∈ S

Operations:

- make_set(x): x is the representative of the new set {x}
- find(x): return representative of set S_x containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

f: # Kind ops

Throughout the discussion of union-find:

- n: total number of make_set operations
 u: # elements
- *m*: total number of operations (make_set, find, and union)

Clearly:

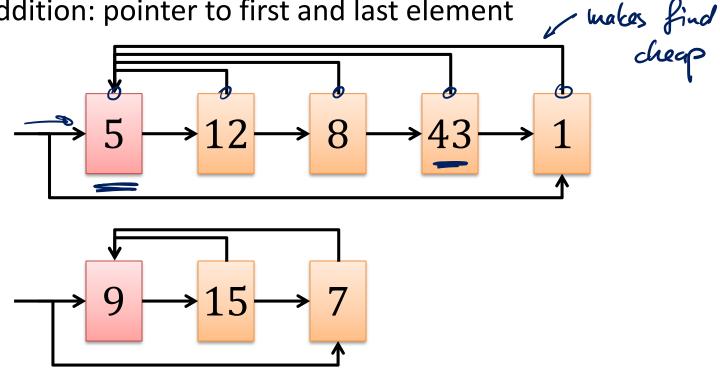
- $m \ge n$
- There are at most n 1 union operations

Remark:

- We assume that the <u>n make_set</u> operations are the first n operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:



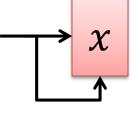
• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5,9

Linked List Implementation

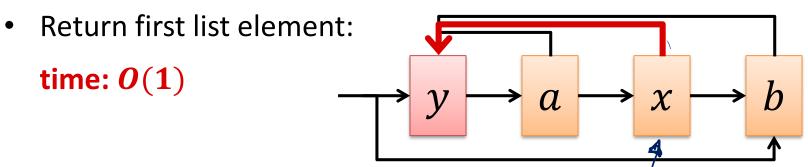
make_set(x):

• Create list with one element:

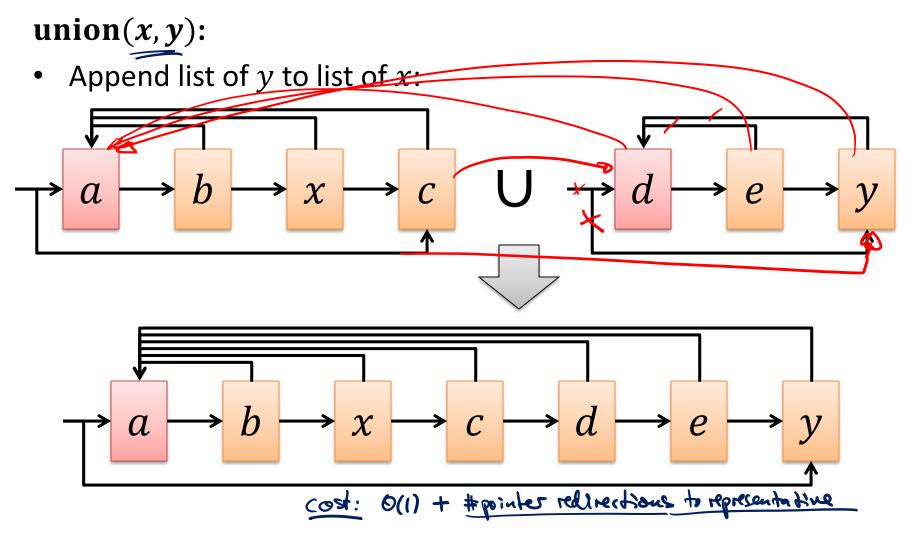
time: **0**(1)



find(x):



Linked List Implementation



Time: **O**(length of list of y)

Algorithm Theory, WS 2018/19

Cost of Union (Linked List Implementation)

Total cost for n-1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_{n-1}, x_n), union(x_{n-2}, x_{n-1}), ..., union(x_1, x_2)

$$X_{1} \quad X_{2} \quad X_{3} \quad X_{4} \quad \dots \quad X_{n-4} \quad X_{n-2} \quad X_{n-2} \quad X_{n-1} \quad X_{n-2}$$

$$= \Theta(u^{2})$$

$$= \Theta(u^{2}) \quad (u^{2}) \quad (u$$

Weighted-Union Heuristic

- FREIBURG
- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

• In each union operation, append shorter list to longer one!

Cost for union of sets S_x and S_y : $O(\min\{|S_x|, |S_y|\})$

Theorem: The overall cost of \underline{m} operations of which at most \underline{n} are make_set operations is $O(\underline{m + n \log n})$.

Weighted-Union Heuristic

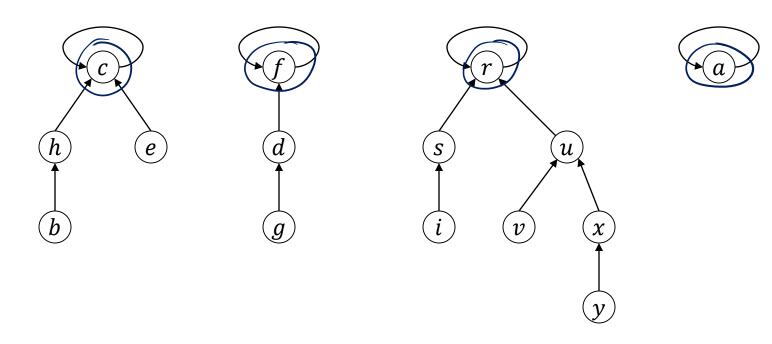
FREIBURG

Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Proof:
total cost of make-set & find operations :
$$O(m)$$

need to bound the total cost of the union operations
= # pointes redirections
Consider a fixed element x repr. pointes
How often do we need to redirect
the representative pointer of x [X]
Size of set cont. x at least doubles
 $\implies \in \log_2 n$ redirections
of repr. pointer of x $O(m + u \log n)$

Disjoint-Set Forests



- Represent each set by a tree
- Representative of a set is the root of the tree

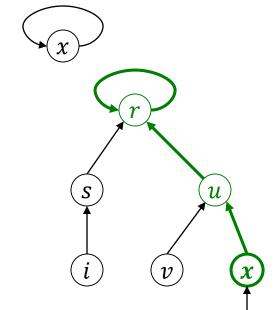
Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root
 (parent pointer to itself)

Fabian Kuhn

Algorithm Theory, WS 2018/19



Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)



Union of sets S_1 and S_2 :

- Root of trees representing S_1 and S_2 : r_1 and r_2
- W.I.o.g., assume that $|S_1| \ge |S_2|$
- Root of $S_1 \cup S_2$: r_1 (r_2 is attached to r_1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case cost of a find-operation is $O(\log n)$ Proof: depth of a tree with k nodes is $\leq \log_2 k$ depth of element x is $d_x = 0$ size of tree cont.x $\geq 2^d$ when dx grows by 1, size of tree coulting at dx=0 1 how can dx gow?

Similar Strategy: union-by-rank

rank: essentially the depth of a tree

Union-Find Algorithms

Recall: *m* operations, *n* of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

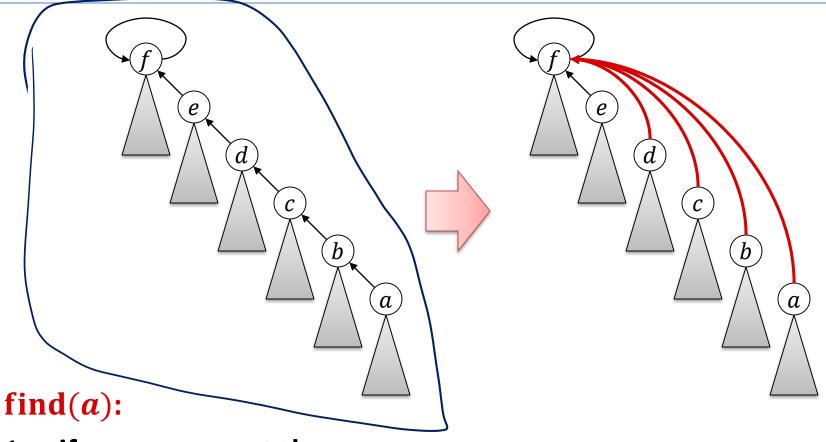
- make_set: worst-case cost O(1)
- find : worst-case cost O(1)
- union : amortized worst-case cost O(log n)

Disjoint-Set Forest with Union-By-Size Heuristic:

- make_set: worst-case cost O(1)
- find : worst-case cost $O(\log n)$ \checkmark
- union : worst-case cost O(log n)

Can we make this faster?

Path Compression During Find Operation



- 1. if $a \neq a$. parent then
- 2. $a.parent \coloneqq find(a.parent)$
- 3. **return** *a*. *parent*

Complexity With Path Compression

When using only path compression (without union-by-rank):

m: total number of operations

Algorithm Theory, WS 2018/19

- <u>f</u> of which are find-operations
- \overline{n} of which are make_set-operations \rightarrow at most n - 1 are union-operations

W >> N

Total cost:
$$O\left(\underbrace{m+f}_{\bullet}\cdot\left[\log_{2+f/n}n\right]\right) = O\left(m+f\cdot\log_{2+m/n}n\right)$$

if $m \gg n$ (e.g., $m=n^{1/2}$
 $O\left(m\cdot\log_{n^{0}}n\right)$

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of m disjoint-set (union-find) operations on n elements (at most n make_set-operations) is

 $\Theta(m \cdot \alpha(m,n)),$

Where $\alpha(m, n)$ is the inverse of the Ackermann function.

grows extremely slowly grows extremely fast
in practice:
$$\alpha(u, u) \leq 4$$

Kruskal: sordug: $\alpha(u, u)$
union-find: $\alpha(u, u)$

Ackermann Function:

For
$$k, \ell \ge 1$$
,
 $A(\underline{k}, \ell) \coloneqq \begin{cases} 2^{\ell}, & \text{if } k = 1, \ell \ge 1 \\ \overline{A(k-1, 2)}, & \text{if } k > 1, \ell = 1 \\ A(\underline{k-1}, A(\underline{k}, \ell - 1)), & \text{if } k > 1, \ell > 1 \end{cases}$

Inverse of Ackermann Function:

$$\underline{\alpha(m,n)} \coloneqq \min\{k \ge 1 \mid A(k, \lfloor m/n \rfloor) > \log_2 n\}$$

UNI FREIBURG

Inverse of Ackermann Function

• $\alpha(m,n) \coloneqq \min\{k \ge 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$

 $m \ge n \Longrightarrow A(k, \lfloor m/n \rfloor) \ge A(k, 1) \Longrightarrow \alpha(m, n) \le \min\{k \ge 1 | A(k, 1) > \log n\}$

• $A(1,\ell) = 2^{\ell}, \quad A(k,1) = A(k-1,2),$ $A(k,\ell) = A(k-1,A(k,\ell-1))$

$$\begin{array}{l} A(2,1) = A(1,2) = 4 \\ A(3,1) = A(2,2) = A(1,A(2,1)) = A(1,4) = 2^{4} = 16 \\ A(4,1) = A(3,2) = A(2,A(3,1)) = A(2,16) = A(1,A(2,15)) = 2^{A(2,15)} \\ \hline \end{array}$$

$$(A(2,5) = A(1,A(2,4)) = 2^{2^{A(2,14)}} = 2^{2^{A(2,14)}} \\ \hline \end{array}$$

 $= 2^{2} \int_{16}^{2}$

≈ ?²⁵⁰