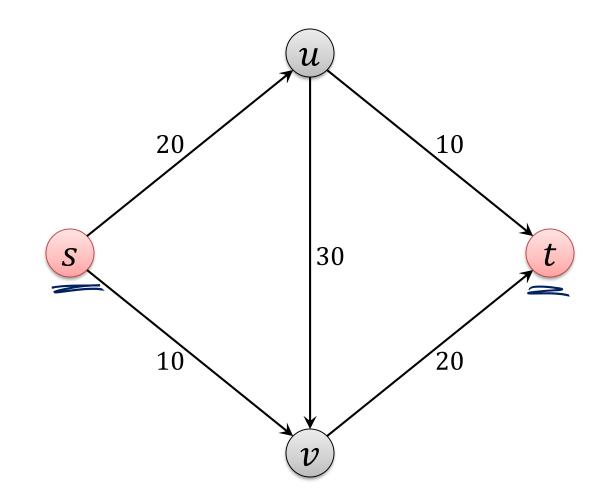


Chapter 6 Graph Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Example: Flow Network



Network Flow: Definition

Flow: function $f: E \to \mathbb{R}_{\geq 0}$

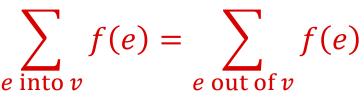
• f(e) is the amount of flow carried by edge e

Capacity Constraints:

• For each edge $e \in E$, $f(e) \le c_e$

Flow Conservation:

• For each node $v \in V \setminus \{\underline{s,t}\}$,



Flow Value:

$$|f| \coloneqq \sum_{e \text{ out of } s} f((s, u)) = \sum_{e \text{ into } t} f((v, t))$$

Algorithm Theory, WS 2018/19

Maximum Flow:

Given a flow network, find a flow of maximum possible value

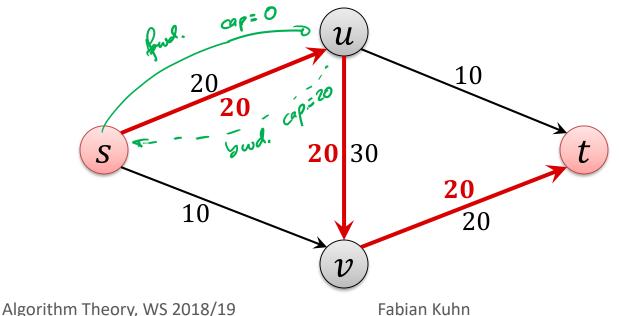
- Classical graph optimization problem
- Many applications (also beyond the obvious ones)
- Requires new algorithmic techniques

Residual Graph

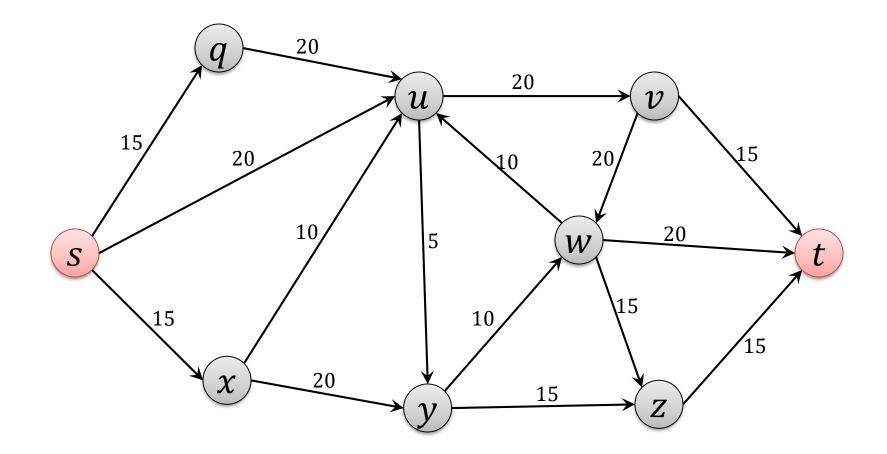
Given a flow network G = (V, E) with capacities c_e (for $e \in E$)

For a flow f on G, define directed graph $G_f = (V_f, E_f)$ as follows: • Node set $V_f = V$

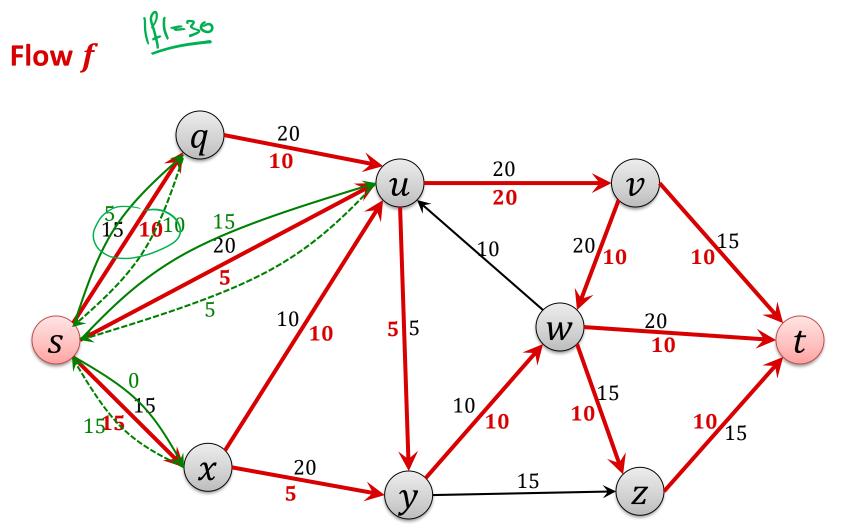
- For each edge e = (u, v) in E, there are two edges in E_f :
 - forward edge e = (u, v) with residual capacity $c_e f(e)$
 - backward edge e' = (v, u) with residual capacity f(e)



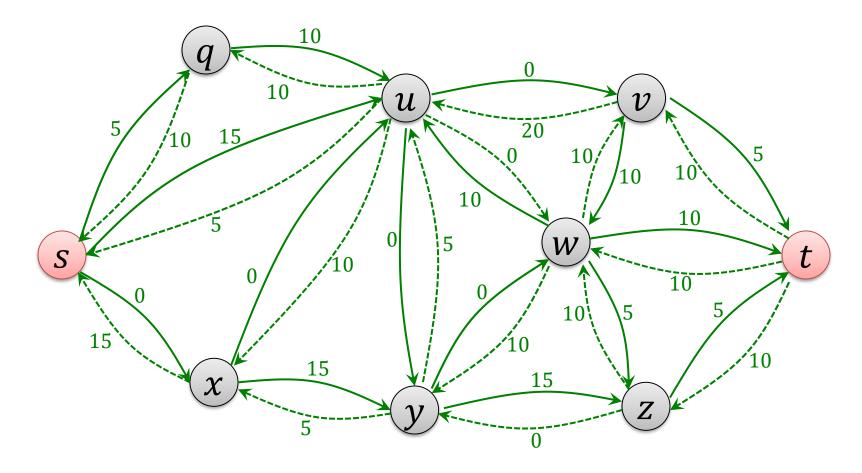
Residual Graph: Example



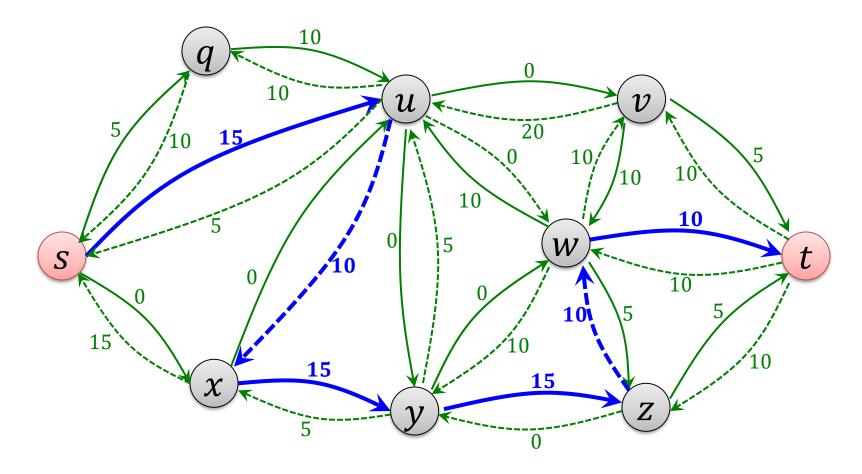
Residual Graph: Example



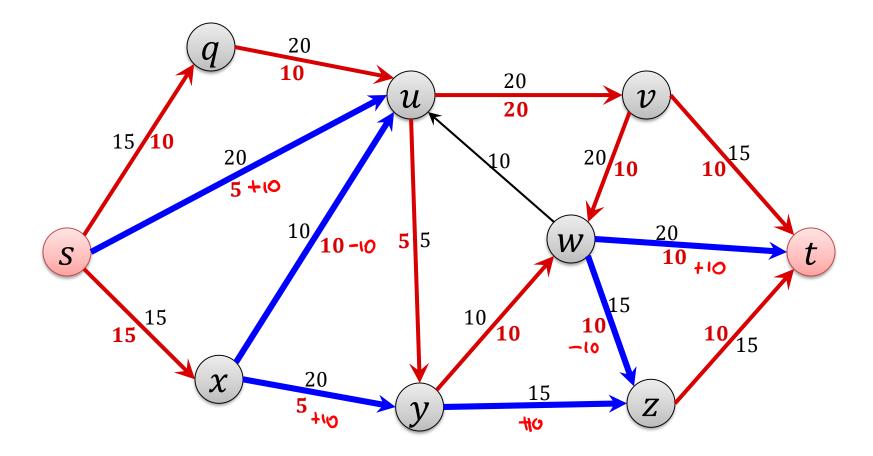
Residual Graph G_f



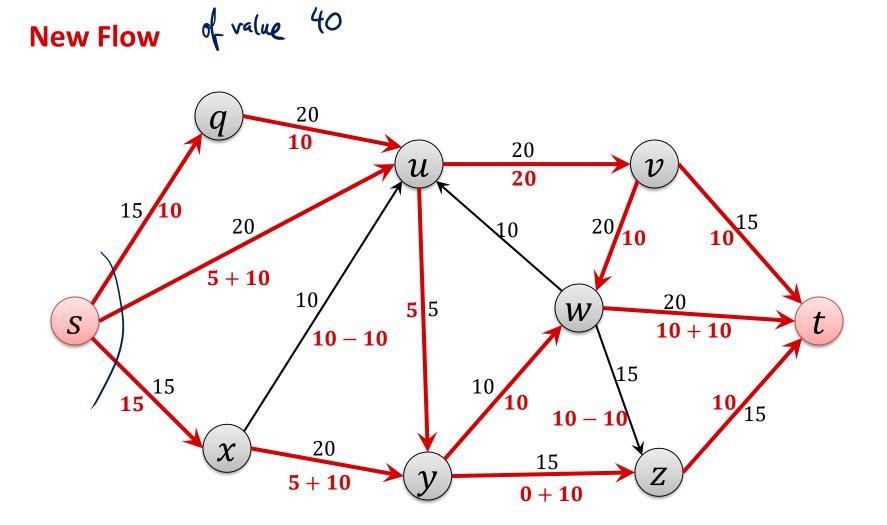
Residual Graph G_f



Augmenting Path



Augmenting Path



UNI FREIBURG

Definition:

An augmenting path P is a (simple) s-t-path on the residual graph G_f on which each edge has residual capacity ≥ 0 .

bottleneck(P, f): minimum residual capacity on any edge of the> \circ augmenting path P

Augment flow f to get flow f':

• For every forward edge (u, v) on P:

 $\underline{f'((u,v))} \coloneqq f((u,v)) + \underline{bottleneck}(P,f)$

• For every backward edge (u, v) on P:

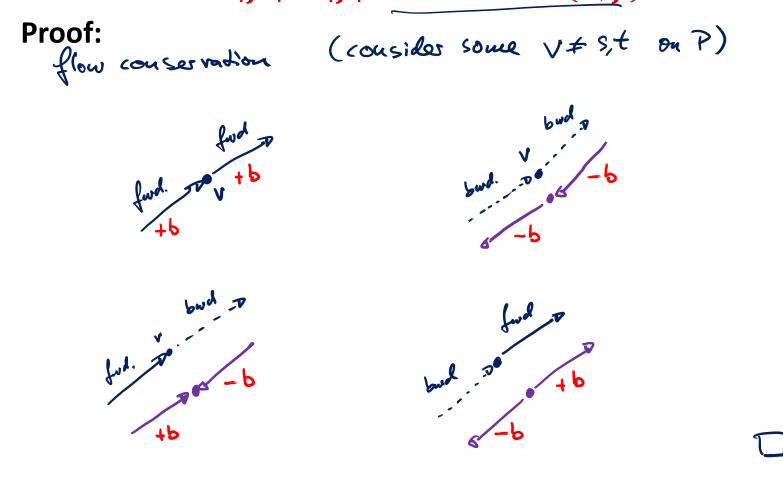
 $f'((v, u)) \coloneqq f((v, u)) - bottleneck(P, f)$

Augmented Flow

Lemma: Given a flow f and an augmenting path P, the resulting augmented flow f' is legal and its value is |f'| = |f| + bottleneck(P, f).**Proof:** |f'|= |f|+b /: s . Pleaves s on a forward edge YeeE: is legal $O \leq f'(e) \leq C_e$ (I) VveVvisits f'in = f'out (I)backer. edge fund. edge b≤ fie) he) i bud. edge cap. = fie) u $c_e \ge f(e) = f(e) - b \ge 0$ "O = fle= fle+b = Ce cap. of fud. edge : Ce-fier 3 b

Augmented Flow

Lemma: Given a flow f and an augmenting path P, the resulting augmented flow f' is legal and its value is |f'| = |f| + bottleneck(P, f).



Fabian Kuhn

Ford-Fulkerson Algorithm

- Improve flow using an augmenting path as long as possible:

1. Initially,
$$f(e) = 0$$
 for all edges $e \in E$, $\underline{G_f = G}$

- 2. while there is an augmenting <u>s-t-path</u> P in G_f do
- 3. Let \underline{P} be an augmenting s-t-path in G_f ;
- 4. $f' \coloneqq \operatorname{augment}(f, P);$
- 5. update f to be f';
- 6. update the residual graph G_f
- 7. **end**;

Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson algorithm terminates after at most *C* iterations, where

$$C = \text{"max flow value"} \le \sum_{e \text{ out of } s} c_e.$$

Proof:

Algorithm Theory, WS 2018/19

Fabian Kuhn

Ford-Fulkerson Running Time

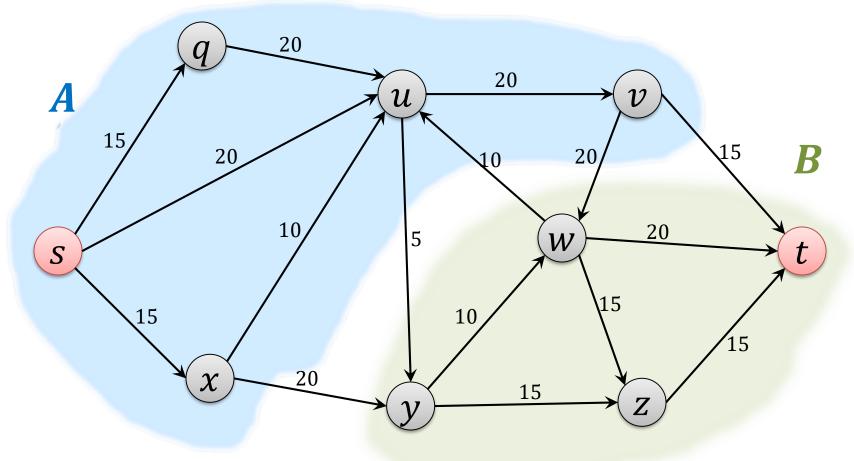
Theorem: If all edge capacities are integers, the Ford-Fulkerson algorithm can be implemented to run in O(mC) time. Zm: #edges **Proof:** Claim. One iteration can be computed in O(m) time 1. compute / update residual graph ~ firstites: O(n) 2. find augun. path / conclude there is no augun. path Lo S-t path in Gg with res. cap. >0 D graph travessal (DTS/BTS): Qm) time 3. update flow values : O(n)

s-*t* Cuts

Definition:

B=VNA

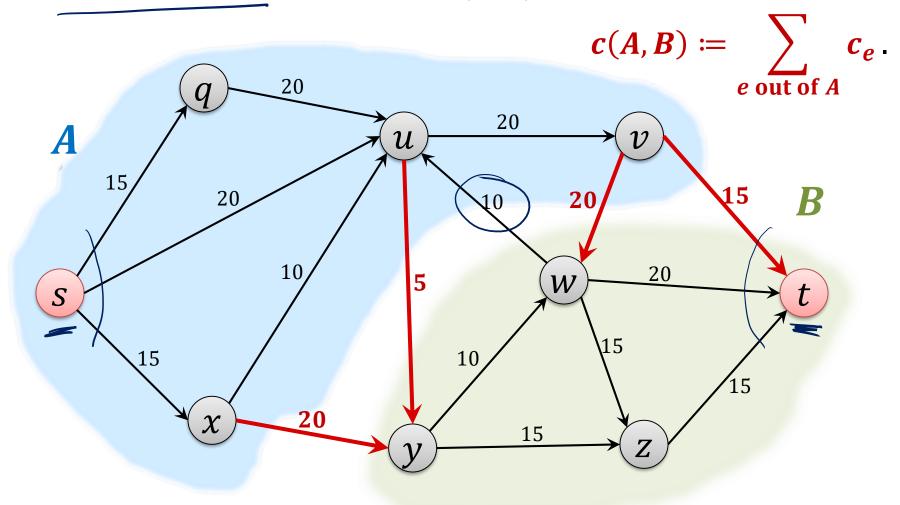
An *s*-*t* cut is a partition $(\underline{A}, \underline{B})$ of the vertex set such that $\underline{s \in A}$ and $\underline{t \in B}$



Cut Capacity

Definition:

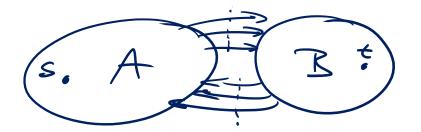
The capacity c(A, B) of an *s*-*t*-cut (A, B) is defined as

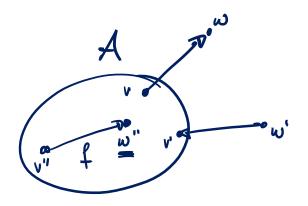


Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{out}(A) - f^{in}(A).$

Proof: $|f| = f^{out} (= f''(+))$ - fⁱⁿ - fⁱⁿ $|f| = f^{out}$ $= \sum_{v \in A} \left(f_{(v)}^{out} - f_{(v)}^{i_u} \right)$ = 0 except for s $= \int^{iut} (A) - \int^{iu} (A)$





Algorithm Theory, WS 2018/19

Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{out}(A) - f^{in}(A)$. **Lemma:** Let f be any s-t flow, and (A, B) any s-t cut. Then,

 $|f| = f^{\rm in}(B) - f^{\rm out}(B).$

$$f^{out}(A) = f^{in}(B)$$
$$f^{in}(A) = f^{out}(B)$$

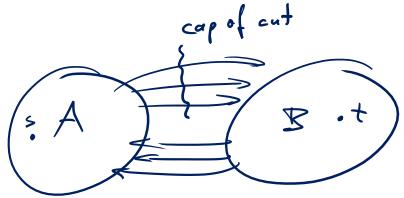
Upper Bound on Flow Value

FREBURG

Lemma:

Let f be any s-t flow and (A, B) any s-t cut. Then $|f| \le c(A, B)$. **Proof:**

$$|f| = \int_{a}^{but} (A) - \int_{a}^{but} (A) \leq C(A, B)$$
$$\int_{a}^{but} (A) \leq C(A, B)$$
$$\int_{a}^{but} (A) \geq O$$

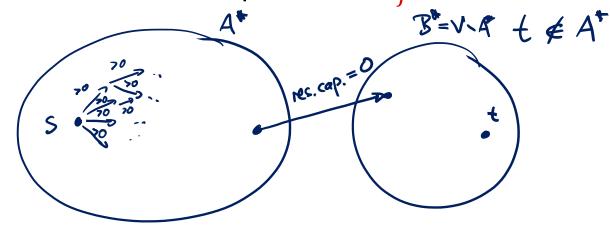


Lemma: If f is an s-t flow such that there is <u>no augmenting path</u> in G_f , then there is an s-t cut (A^*, B^*) in G for which

 $|f| = c(A^*, B^*).$

Proof:

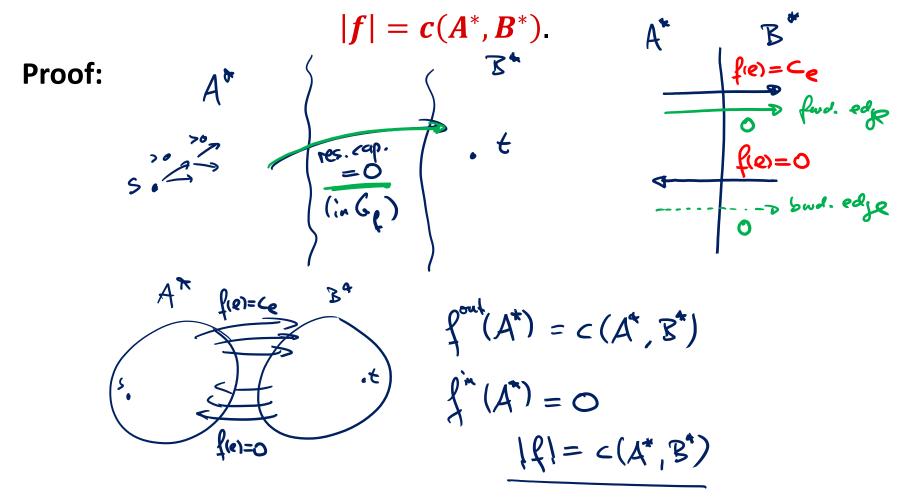
Define A*: set of nodes that can be reached from s on a path with positive residual capacities in G_f:



• For $B^* = V \setminus A^*$, (A^*, B^*) is an *s*-*t* cut

- By definition $\underline{s} \in A^*$ and $\underline{t} \notin A^*$

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which



Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which

 $|\boldsymbol{f}| = \boldsymbol{c}(\boldsymbol{A}^*, \boldsymbol{B}^*).$

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

Proof:
FF gives a flow
$$f^*$$
 and a Vart (A^a, B^*)
S.t. $(f^*| = c(A^*, B^*))$
we have shown that for all flows f
 $|f| \le c(A^*, B^*)$

Ford-Fulkerson also gives a min-cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in O(m) time.

f moximum
$$\rightarrow$$
 no augm. path
Can find cut (A^*, B^*) s.t. $(f_1 = c(A^*, B^*))$
Lo as before by using $B \neq S/D \neq S$
 (A^*, B^*) is an s-t cut of min. cap.
because for every other s-t cut (A, B)
we know that $|f_1| \le c(A, B)$

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an $\underline{s-t}$ flow is equal to the minimum capacity of an $\underline{s-t}$ cut.

$$\begin{aligned} \label{eq:FF} \overline{FF} & glues \quad f^* \quad b \quad c(A^*, B^*) \\ & \text{s.t.} \quad f^* \quad \max \quad flows \\ & c(A^*, B^*) \quad \min \quad \text{s-tcut} \\ & |f^*| = c(A^*, B^*) \end{aligned}$$

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a maximum flow f for which the flow f(e) of every edge e is an integer.

Non-Integer Capacities

What if capacities are not integers?

- rational capacities:
 - can be turned into integers by multiplying them with large enough integer
 - algorithm still works correctly
- real (non-rational) capacities:
 - not clear whether the algorithm always terminates
- even for integer capacities, time can linearly depend on the value of the maximum flow

Slow Execution



• Number of iterations: 2000 (value of max. flow)

Improved Algorithm

Idea: Find the best augmenting path in each step

- best: path P with maximum bottleneck(P, f)
- Best path might be rather expensive to find
 A find almost bast path

 \rightarrow find almost best path

- Scaling parameter Δ : (initially, $\Delta = \text{"max } c_e$ rounded down to next power of 2")
- As long as there is an augmenting path that improves the flow by at least Δ, augment using such a path
- If there is no such path: $\Delta \coloneqq \Delta /_2$

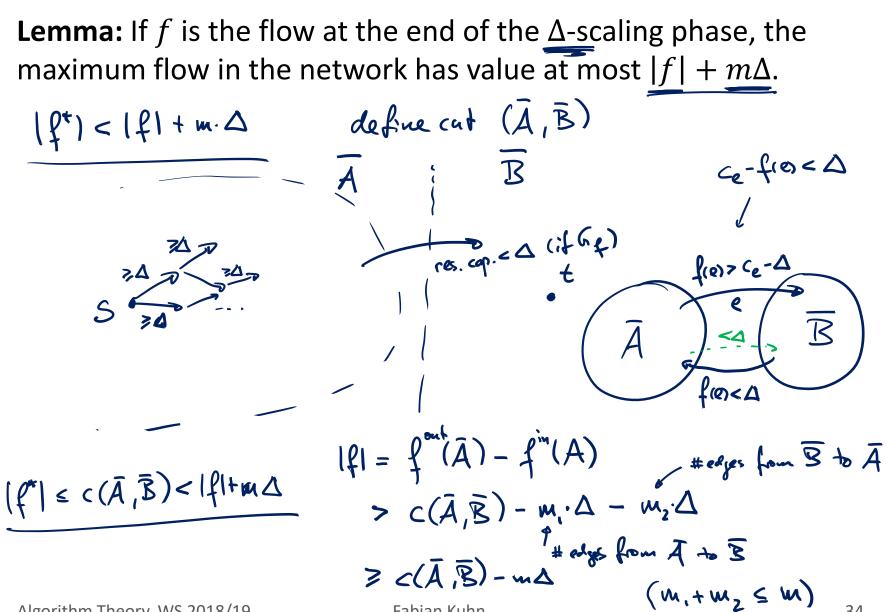
Scaling Parameter Analysis

Lemma: If all capacities are integers, number of different scaling parameters used is $\leq 1 + \lfloor \log_2 C \rfloor$.

• Δ -scaling phase: Time during which scaling parameter is Δ

Algorithm Theory, WS 2018/19

Length of a Scaling Phase



Fabian Kuhn

Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase is at most 2m.

at the beginning of the A-scaling phase
Ly at the end of the 20-scaling phase

$$= (f^{t}) < (fl + 2m \Delta) \quad (prev. lemma)$$

code augur. improves flow by $>\Delta$
 $= 2 = 2m$ augur. in Δ -scaling phase
Tunning time: $O(log C) \cdot O(m) \cdot O(m) = O(m^{2} \cdot log C)$

UNI FREIBURG

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with scaling parameter and integer capacities is at most $O(m \log C)$. The algorithm can be implemented in time $O(m^2 \log C)$.

Strongly Polynomial Algorithm

• Time of regular Ford-Fulkerson algorithm with integer capacities:

- Time of algorithm with scaling parameter: $O(m^2 \log C)$
- $O(\log C)$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in *n*?
- Always picking a shortest augmenting path leads to running time

 $O(m^2n)$

also works for arbitrary real-valued weights

Other Algorithms

• There are many other algorithms to solve the maximum flow problem, for example:

• Preflow-push algorithm:

- Maintains a preflow (\forall nodes: inflow \geq outflow)
- Alg. guarantees: As soon as we have a flow, it is optimal
- Detailed discussion in 2012/13 lecture
- Running time of basic algorithm: $O(m \cdot n^2)$
- Doing steps in the "right" order: $O(n^3)$
- Current best known complexity: $O(m \cdot n)$
 - For graphs with $m \ge n^{1+\epsilon}$ (for every constant $\epsilon > 0$)
 - For sparse graphs with $m \leq n^{16/15-\delta}$
 - approximate max flow in understed prophs in time Orm

[King,Rao,Tarjan 1992/1994]