Chapter 6
Graph Algorithms

Algorithm Theory
WS 2018/19

Fabian Kuhn

UNI

FREIBURG

Strongly Polynomial Algorithm

UNI
f

FREIBURG

* Time of regular Ford-Fulkerson algorithm with integer capacities:

O(mC)
—t

* Time of algorithm with scaling parameter:
0(m?log C)

* O(log() is polynomial in the size of the input, but notinn

 Can we get an algorithm that runs in time polynomial in n?

* Always picking a shortest augmenting path leads to running time
) 0(m?n)

— also works for arbitrary real-valued weights

Algorithm Theory, WS 2018/19 Fabian Kuhn 2

Other Algorithms

UNI

FREIBURG

* There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm:
— Maintains a preflow (V nodes: inflow > outflow)
— Alg. guarantees: As soon as we have a flow, it is optimal
— Detailed discussion in 2012/13 lecture
— Running time of basic algorithm: O0(m - n?)
— Doing steps in the “right” order: 0(n3)

e Current best known complexity: O(m - n)

— For graphs with m > nl*€ [King,Rao,Tarjan 1992/1994]

(for every constant € > 0)

— For sparse graphs with m < n16/15-6 [Orlin, 2013]

Algorithm Theory, WS 2018/19 Fabian Kuhn

Maximum Flow Applications

UNI
FREIBURG

 Maximum flow has many applications

 Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:
— related network flow problems
— computation of small cuts
— computation of matchings
— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints

Algorithm Theory, WS 2018/19 Fabian Kuhn 4

Undirected Edges and Vertex Capacities _

FRE:BURG

UNI

ﬂUndirected Edges: .C/' —0 .;___%‘

* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:

* Not only edges, but also (or only) nodes have capacities
 Capacity ¢, of node v & {s, t}: v %
—D

\O
in — fout >0
PO =" =g © 7t =

* Replace node v by edge e, = {Vip, Vout}:

Cv

] v

=

Algorithm Theory, WS 2018/19 Fabian Kuhn 5

Minimum s-t Cut = “«« o i ced Hetrtun

UNI
FREIBURG

Given: undirected graph G = (7[/, E), nodess, t €V
WA

n
s-t cut: Partition (4, B) of V suchthats € A,t € B

Size of cut (A4, B): number of edges crossing the cut
Wuu‘m& i“wx:

O(w?)

S of cuf = Bedep cerssig Hut cub

Objective: find s-t cut of minimum size s
CN’ﬂ\l 4/(0“’ \AQJ'\FN% \) \Mau Qﬂsgs oQ).rec.l(a(o —D &
Z) odgp cop. = |

SRQ G{ UA‘ I c. = (ar. Cu‘l' " g,(o\: MLJ‘WQS&

Algorithm Theory, WS 2018/19 Fabian Kuhn 6

UNI

Edge Connectivity

FREIBURG

Definition: A graph G = (V, E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCE|X|<k-1.
nad do wmove zk e(ﬂys P &B(owmd &

2 ANG) edpes Qde a‘mue«kw‘% A(C):

wex. £ sd & s
2,@,‘&(cau»at-'?o/

<"7,1: e«!yzs

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

* minimum set X is a minimum s-t cut forsome s,t €V

: e
— Actually for all s, t in different components of Gy = (V,E \ X)
Wy & OG-
Cuuuing STl n w\)

* Possible algorithm: fix s and find min s-t cut forallt # s
— —_—

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

Minimum s-t Vertex-Cut

UNI
FREIBURG

Given: ugdirected graph G = (V,E), nodess,t €V

s-t vertex cut: Set X € V suchthats,t € X and sand t are in

A

different components of the sub-graph G[V \ X]induced by V' \ X

Size of vertex cut: | X| /@/b

Objective: find s-t vertex-cut ofyminimum 5|zeJ®
* Replace undirected edge {u, v} by (u,v) and (v,u)
* Compute max s-t flow for edge capacities o and node capacities

0
c, =1forv #s,t @@

_

N \
* Replace each node v by v;, and vyt %vu_q.g
+

\

Cﬁs e — — in \['u

* Min'edge cut corresponds to min vertex cut in G

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

UNI

Vertex Connectivity

FREIBURG

Definition: A graph ¢ = (V,E) is k-vertex connected for an integer
k = 1if the sub-graph G[V \ X] induced by V' \ X is connected for
every edge set

heedd 49 reunone al.-l- ||eas*) L weds Ap wale & o(?,seowdf"”{

verlex couu. = (<)

wak. £ st
é :S k_w‘(x-@auﬂ(#d

Goal: Compute vertex connectivity k(G) of G
(and node set X of size k(G) that divides G into = 2 parts)

* Compute minimum s-t vertex cut for all sand all t # s
w\m:ué ﬁ‘?&_ O(W\ . ﬂs) — O (wma i R?é))
9

Algorithm Theory, WS 2018/19 Fabian Kuhn

Edge-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t €V

Goal: Find as many edge-disjoint s-t paths as possible

Solution: %‘ﬁ ~, " ¢
* Find max s-t'flow in G with edge capacitiesc, = 1 foralle € E
—_— .Z

Flow f induces |f| edge-disjoint paths: -1
* Integral capacities = can compute integral max flow f

* Get |f| edge-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1*(v) = f°ut(v)

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

Vertex-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t € I/

Goal: Find as many internally vertex-disjoint s-t paths as possible

iy By

Solution:
* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f

* Get |f] vertex-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)

Algorithm Theory, WS 2018/19 Fabian Kuhn 11

UNI

Menger’s Theorem

FREIBURG

Theorem: (edge version)
For every graph G = (V, E) with nodes s, t € V, the size of the

minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from sto t. A L

s Q ——— £
Theorem: (node version)
For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t

o @/—\ L
S 6 - X a— o
I¥l= L

* Both versions can be seen as a special case of the max flow min

cut theorem

\/

Algorithm Theory, WS 2018/19 Fabian Kuhn 12

Baseball Elimination

UNI

FREIBURG

Team Wins Losses To Play Against = 1;;
i w; ?; T; NY Balt. T. Bay
New York _§__1 69 12 - 2= EX 2 3
Baltimore 79 77 6 g2 - 2 1 1
Tampa Bay 17;-9 74 9 _5_ 2 - 1 1
Toronto Zﬁ 80 6 2 1 1 - 2
Boston Z1 84 A 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins
 Which teams can still win (as least as many wins as top team)?
* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins
* Ifforsomeli,j: w; +7; < w; 2 team i is eliminated
» Sufficient condition, but not a necessary one!

Algorithm Theory, WS 2018/19 Fabian Kuhn 13

Baseball Elimination

UNI

FREIBURG

Team Wins Losses To Play Against = 1;;
i w; ?; T; Balt. T. Bay
New York 81 69 12 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 74 9 =5- 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

e Can Toronto still finish first?

 Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

———

* Hence: Toronto cannot finish first
 How about the others? How can we solve this in general?

Algorithm Theory, WS 2018/19 Fabian Kuhn 14

Teow 3 will have € Wy +75 LS

Max Flow Formulation w: sw~ o teai s o
T: 8 dtm. et 4 lecu 1

UNI
f

FREIBURG

e Canteam 3 finish with most wins?

Remaining number team Number of wins team i can

of games between game nodes have to not beat team 3
the 2 teams
nodes

* Team 3 can finish first iff all source-game edges are saturated

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

Reason for Elimination

Team Wins Losses To Play Against = 1;;
; ?; T; NY Balt. Bost. Tor.
NewYork | [75) | 59 28 ~I\3 8 7 3
Baltimore | | 71 63 28 3 N 2 7 4
Boston 69 66 27 8 2 | N o 0
Toronto | (63 | 72 27 7 7 0o | >~ o0
Detroit 49 86 27 3 4 0 0 -
e Detroit could finish with 49 + 27 = 7=6_wins
* Consider R = {NY, Bal, Bos, Tor}
— Have toz?g;ether already won W(R); 278 games
— Must together win at least r(R) =__2_7_ more games
On average, teams in R win 278%27 — 76.25 games
e
Algorithm Theory, WS 2018/19 Fabian Kuhn

16

Reason for Elimination

UNI
FREIBURG

e (Can team 3 finish with most wins? Z(wg)-w -w,< (5 .

/

1-2—r 0 i

W3
Remaining number 4-5 CO team Number of wins team i can
of games between game nodes have to not beat team 3
the 2 teams
nodes

 Team 3 cannot finish first & min cut of size < “all blue edges”

Algorithm Theory, WS 2018/19 Fabian Kuhn 17

Reason for Elimination

UNI

FREIBURG

Certificate of elimination:

=R._ C X, w(R) = Zwi, r(R) = z i

IER [,jER

w w
#wins of #remaining games
nodesin R among nodesin R

Team x € X is eliminated by R if
w(R) + r(R)
R|

- —

> Wy T Ty.

Algorithm Theory, WS 2018/19 Fabian Kuhn

18

Reason for Elimination

UNI

FREIBURG

Theorem: Team x is eliminated if and only if there exists a subset
R € X of the teams X such that x is eliminated by R.

Proof Idea:
* Minimum cut gives a certificate...

 If xiseliminated, max flow solution does not saturate all
outgoing edges of the source.

 Team nodes of unsaturated source-game edges are saturated

* Source side of min cut contains all teams of saturated team-dest.

edges of unsaturated source-game edges

e Set of team nodes in source-side of min cut give a certificate R

Algorithm Theory, WS 2018/19 Fabian Kuhn 19

Circulations with Demands

UNI
f

FREIBURG

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

* The circulation problem is a feasibility rather than a maximization
problem

Algorithm Theory, WS 2018/19 Fabian Kuhn 20

Circulations with Demands: Formally

Given: Directed network G = (V/, E) with
* Edge capacitiesc, > Oforalle € E

* Nodedemandsd, € Rforallv eV
— d;, > 0: node needs flow and therefore is a sink

ﬁ
— d, < 0: node has a supply of —d,, and is therefore a source
— —

— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
 Capacity Conditions:Ve € E: 0 < f(e) <c,

« Demand Conditions: Yv € V: f(v) — fOuv) =d

—_—

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI
f

FREIBURG

<

l\

Example

UNI
f

FREIBURG

-3

Algorithm Theory, WS 2018/19

3
/
~— 2

2
\

A

f——

Fabian Kuhn

22

Condition on Demands

UNI
FREIBURG

Claim: If there exists a feasible circulation with demands d,, for
v €V, then = dub

Zdv=o.

VEV
Proof:

' i ol
. ;_v_c_l_y — Zv (fln(v) —fOUt(v)) =2v,((\n — 2\;'&" =0

* f(e) of each edge e appears twice in the above sum with
different signs = overall sumis 0 . Lo
e

>0

Total supply = total demand:

Define D := z d, = z —d,,

Algorithm Theory, WS 2018/19 Fabian Kuhn 23

Reduction to Maximum Flow

UNI
f

FREIBURG

e Add “super-source” s* and “super-sink” t* to network

t* siphons
flow out
of sinks

s” supplies
sources
with flow

Algorithm Theory, WS 2018/19 Fabian Kuhn 24

Example

* / /ﬂ > _3
3
3

S b// 3

-3 > 2

2
\ 25
@
@

Algorithm Theory, WS 2018/19 Fabian Kuhn 25

UNI

Formally...

FREIBURG

Reduction: Get graph G’ from graph as follows
* Nodesetof G'isV U {s*, t*}

 Edge setis E and edges
— (8%, v) forall v with d,, < 0, capacity of edge is —d,,
— (v, t7) for all v with d,, > 0, capacity of edge is d,,

Observations:

 Capacity of min s*-t* cut is at most D (e.g., the cut (s*,V U {t*})

* A feasible circulation on G can be turned into a feasible flow of
value D of G' by saturating all (s*,v) and (v, t*) edges.

* Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated

— By removing these edges, we get exactly the demand constraints

Algorithm Theory, WS 2018/19 Fabian Kuhn 26

Circulation with Demands

UNI
FREIBURG

Theorem: There is a feasible circulation with demands d,,, v € VV
on graph G if and only if there is a flow of value D on G'.

* If all capacities and demands are integers, there is an integer
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands

d,, v € V if and only if for all cuts (4, B), 22
<_? -/
z d, < c(A B). G“'ﬁ
VEB

Algorithm Theory, WS 2018/19 Fabian Kuhn 27

Circulation: Demands and Lower Bounds .

UNI
FREIBURG

Given: Directed network G = (V/, E) with
* Edge capacities ¢, > 0 and lower bounds 0 < ¢, < c,fore € E

* Nodedemandsd, € Rforallv eV

— d, > 0: node needs flow and therefore is a sink
— d, < 0: node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
* Capacity Conditions:Ve € E: £, < f(e) < c,

 Demand Conditions: Yv € V: f(v) — foU(v) = d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Algorithm Theory, WS 2018/19 Fabian Kuhn 28

