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Strongly Polynomial Algorithm

• Time of regular Ford-Fulkerson algorithm with integer capacities:

𝑂(𝑚𝐶)

• Time of algorithm with scaling parameter:

𝑂 𝑚2log 𝐶

• 𝑂(log 𝐶) is polynomial in the size of the input, but not in 𝑛

• Can we get an algorithm that runs in time polynomial in 𝑛?

• Always picking a shortest augmenting path leads to running time

𝑂 𝑚2𝑛

– also works for arbitrary real-valued weights



Algorithm Theory, WS 2018/19 Fabian Kuhn 3

Other Algorithms

• There are many other algorithms to solve the maximum flow 
problem, for example:

• Preflow-push algorithm:
– Maintains a preflow (∀ nodes: inflow ≥ outflow)

– Alg. guarantees: As soon as we have a flow, it is optimal

– Detailed discussion in 2012/13 lecture

– Running time of basic algorithm: 𝑂 𝑚 ⋅ 𝑛2

– Doing steps in the “right” order: 𝑂 𝑛3

• Current best known complexity: 𝑶 𝒎 ⋅ 𝒏
– For graphs with 𝑚 ≥ 𝑛1+𝜖 [King,Rao,Tarjan 1992/1994]

(for every constant 𝜖 > 0)

– For sparse graphs with 𝑚 ≤ 𝑛 Τ16 15−𝛿 [Orlin, 2013]
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Maximum Flow Applications

• Maximum flow has many applications

• Reducing a problem to a max flow problem can even be seen as 
an important algorithmic technique

• Examples:
– related network flow problems

– computation of small cuts

– computation of matchings

– computing disjoint paths

– scheduling problems

– assignment problems with some side constraints

– …
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Undirected Edges and Vertex Capacities

Undirected Edges:

• Undirected edge {𝑢, 𝑣}: add edges 𝑢, 𝑣 and (𝑣, 𝑢) to network

Vertex Capacities:

• Not only edges, but also (or only) nodes have capacities

• Capacity 𝑐𝑣 of node 𝑣 ∉ {𝑠, 𝑡}:

𝑓in 𝑣 = 𝑓out 𝑣 ≤ 𝑐𝑣

• Replace node 𝑣 by edge 𝑒𝑣 = {𝑣in, 𝑣out}:

𝑣 𝑣in 𝑣out
𝒄𝒗
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Minimum 𝑠-𝑡 Cut

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 cut: Partition (𝐴, 𝐵) of 𝑉 such that 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵

Size of cut (𝑨,𝑩): number of edges crossing the cut

Objective: find 𝑠-𝑡 cut of minimum size
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Edge Connectivity

Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-edge connected for an integer 
𝑘 ≥ 1 if the graph 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋) is connected for every edge set

𝑋 ⊆ 𝐸, 𝑋 ≤ 𝑘 − 1.

Goal: Compute edge connectivity 𝜆(𝐺) of 𝐺
(and edge set 𝑋 of size 𝜆(𝐺) that divides 𝐺 into ≥ 2 parts)

• minimum set 𝑋 is a minimum 𝑠-𝑡 cut for some 𝑠, 𝑡 ∈ 𝑉
– Actually for all 𝑠, 𝑡 in different components of 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋)

• Possible algorithm: fix 𝑠 and find min 𝑠-𝑡 cut for all 𝑡 ≠ 𝑠
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Minimum 𝑠-𝑡 Vertex-Cut

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 vertex cut: Set 𝑋 ⊂ 𝑉 such that 𝑠, 𝑡 ∉ 𝑋 and 𝑠 and 𝑡 are in 
different components of the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋

Size of vertex cut: |𝑋|

Objective: find 𝑠-𝑡 vertex-cut of minimum size

• Replace undirected edge {𝑢, 𝑣} by (𝑢, 𝑣) and (𝑣, 𝑢)

• Compute max 𝑠-𝑡 flow for edge capacities ∞ and node capacities

𝑐𝑣 = 1 for 𝑣 ≠ 𝑠, 𝑡

• Replace each node 𝑣 by 𝑣in and 𝑣out:

• Min edge cut corresponds to min vertex cut in 𝐺
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Vertex Connectivity

Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-vertex connected for an integer 
𝑘 ≥ 1 if the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 is connected for 
every edge set

𝑋 ⊆ 𝑉, 𝑋 ≤ 𝑘 − 1.

Goal: Compute vertex connectivity 𝜅(𝐺) of 𝐺
(and node set 𝑋 of size 𝜅(𝐺) that divides 𝐺 into ≥ 2 parts)

• Compute minimum 𝑠-𝑡 vertex cut for all 𝑠 and all 𝑡 ≠ 𝑠
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Edge-Disjoint Paths

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many edge-disjoint 𝑠-𝑡 paths as possible

Solution: 

• Find max 𝑠-𝑡 flow in 𝐺 with edge capacities 𝑐𝑒 = 1 for all 𝑒 ∈ 𝐸

Flow 𝑓 induces 𝑓 edge-disjoint paths:

• Integral capacities  can compute integral max flow 𝑓

• Get 𝑓 edge-disjoint paths by greedily picking them

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣)
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Vertex-Disjoint Paths

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many internally vertex-disjoint 𝑠-𝑡 paths as possible

Solution: 

• Find max 𝑠-𝑡 flow in 𝐺 with node capacities 𝑐𝑣 = 1 for all 𝑣 ∈ 𝑉

Flow 𝑓 induces 𝑓 vertex-disjoint paths:

• Integral capacities  can compute integral max flow 𝑓

• Get 𝑓 vertex-disjoint paths by greedily picking them

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣)



Algorithm Theory, WS 2018/19 Fabian Kuhn 12

Menger’s Theorem

Theorem: (edge version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the 
minimum 𝑠-𝑡 (edge) cut equals the maximum number of pairwise 
edge-disjoint paths from 𝑠 to 𝑡.

Theorem: (node version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the 
minimum 𝑠-𝑡 vertex cut equals the maximum number of pairwise 
internally vertex-disjoint paths from 𝑠 to 𝑡

• Both versions can be seen as a special case of the max flow min 
cut theorem
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Baseball Elimination

• Only wins/losses possible (no ties), winner: team with most wins

• Which teams can still win (as least as many wins as top team)?

• Boston is eliminated (cannot win):
– Boston can get at most 78 wins, New York already has 81 wins

• If for some 𝑖, 𝑗: 𝑤𝑖 + 𝑟𝑖 < 𝑤𝑗  team 𝑖 is eliminated

• Sufficient condition, but not a necessary one!

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 69 12 - 2 5 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 74 9 5 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -
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Baseball Elimination

• Can Toronto still finish first?

• Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
 if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

• Hence: Toronto cannot finish first

• How about the others? How can we solve this in general?

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 69 12 - 2 5 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 74 9 5 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -
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Max Flow Formulation

• Can team 3 finish with most wins?

• Team 3 can finish first iff all source-game edges are saturated
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Reason for Elimination

• Detroit could finish with 49 + 27 = 76 wins

• Consider 𝑅 = {NY, Bal, Bos, Tor}
– Have together already won 𝑤 𝑅 = 278 games

– Must together win at least 𝑟 𝑅 = 27 more games

• On average, teams in 𝑅 win 
278+27

4
= 76.25 games

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. Bost. Tor. Detr.

New York 75 59 28 - 3 8 7 3

Baltimore 71 63 28 3 - 2 7 4

Boston 69 66 27 8 2 - 0 0

Toronto 63 72 27 7 7 0 - 0

Detroit 49 86 27 3 4 0 0 -

AL East: Aug 30, 1996
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Reason for Elimination

• Can team 3 finish with most wins?

• Team 3 cannot finish first ⟺ min cut of size < “all blue edges”
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Reason for Elimination

Certificate of elimination:

𝑅 ⊆ 𝑋, 𝑤 𝑅 ≔෍

𝑖∈𝑅

𝑤𝑖 , 𝑟 𝑅 ≔ ෍

𝑖,𝑗∈𝑅

𝑟𝑖,𝑗

Team 𝑥 ∈ 𝑋 is eliminated by 𝑅 if

𝑤 𝑅 + 𝑟(𝑅)

|𝑅|
> 𝑤𝑥 + 𝑟𝑥 .

ቄ ቄ

#wins of 
nodes in 𝑅

#remaining games
among nodes in 𝑅
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Reason for Elimination

Theorem: Team 𝑥 is eliminated if and only if there exists a subset 
𝑅 ⊆ 𝑋 of the teams 𝑋 such that 𝑥 is eliminated by 𝑅.

Proof Idea:

• Minimum cut gives a certificate…

• If 𝑥 is eliminated,  max flow solution does not saturate all 
outgoing edges of the source.

• Team nodes of unsaturated source-game edges are saturated

• Source side of min cut contains all teams of saturated team-dest. 
edges of unsaturated source-game edges

• Set of team nodes in source-side of min cut give a certificate 𝑅
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Circulations with Demands

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several 
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands 
are exactly satisfied

• The circulation problem is a feasibility rather than a maximization 
problem
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Circulations with Demands: Formally

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 for all 𝑒 ∈ 𝐸

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.
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Example
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Condition on Demands

Claim: If there exists a feasible circulation with demands 𝑑𝑣 for 
𝑣 ∈ 𝑉, then

෍

𝑣∈𝑉

𝑑𝑣 = 0.

Proof:

• σ𝑣 𝑑𝑣 = σ𝑣 𝑓in 𝑣 − 𝑓out 𝑣

• 𝑓(𝑒) of each edge 𝑒 appears twice in the above sum with 
different signs  overall sum is 0

Total supply = total demand:

Define 𝑫 ≔ ෍

𝒗:𝒅𝒗>𝟎

𝒅𝒗 = ෍

𝒗:𝒅𝒗<𝟎

−𝒅𝒗
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Reduction to Maximum Flow

• Add “super-source” 𝑠∗ and “super-sink” 𝑡∗ to network
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Example
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Formally…

Reduction: Get graph 𝐺′ from graph as follows

• Node set of 𝐺′ is 𝑉 ∪ 𝑠∗, 𝑡∗

• Edge set is 𝐸 and edges
– (𝑠∗, 𝑣) for all 𝑣 with 𝑑𝑣 < 0, capacity of edge is −𝑑𝑣
– (𝑣, 𝑡∗) for all 𝑣 with 𝑑𝑣 > 0, capacity of edge is 𝑑𝑣

Observations:

• Capacity of min 𝑠∗-𝑡∗ cut is at most 𝐷 (e.g., the cut 𝑠∗, 𝑉 ∪ {𝑡∗ )

• A feasible circulation on 𝐺 can be turned into a feasible flow of 
value 𝐷 of 𝐺′ by saturating all (𝑠∗, 𝑣) and (𝑣, 𝑡∗) edges.

• Any flow of 𝐺′ of value 𝐷 induces a feasible circulation on 𝐺
– 𝑠∗, 𝑣 and 𝑣, 𝑡∗ edges are saturated

– By removing these edges, we get exactly the demand constraints
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Circulation with Demands

Theorem: There is a feasible circulation with demands 𝑑𝑣, 𝑣 ∈ 𝑉
on graph 𝐺 if and only if there is a flow of value 𝐷 on 𝐺′.

• If all capacities and demands are integers, there is an integer 
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph 𝐺 has a feasible circulation with demands 
𝑑𝑣, 𝑣 ∈ 𝑉 if and only if for all cuts (𝐴, 𝐵),

෍

𝑣∈𝐵

𝑑𝑣 ≤ 𝑐(𝐴, 𝐵) .
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Circulation: Demands and Lower Bounds

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 and lower bounds 𝟎 ≤ ℓ𝒆 ≤ 𝒄𝒆 for 𝒆 ∈ 𝑬

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: ℓ𝒆 ≤ 𝒇 𝒆 ≤ 𝒄𝒆

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.


