

Chapter 6 Graph Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Strongly Polynomial Algorithm

• Time of regular Ford-Fulkerson algorithm with integer capacities:

• Time of algorithm with scaling parameter:

- $O(\log C)$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in *n*?
- Always picking a shortest augmenting path leads to running time

 $(0(m^2n))$

- also works for arbitrary real-valued weights

 $O(\underline{m}^2 \log C)$

Other Algorithms

• There are many other algorithms to solve the maximum flow problem, for example:

Preflow-push algorithm:

- Maintains a preflow (\forall nodes: inflow \geq outflow)
- Alg. guarantees: As soon as we have a flow, it is optimal
- Detailed discussion in 2012/13 lecture
- Running time of basic algorithm: $O(m \cdot n^2)$
- Doing steps in the "right" order: $O(n^3)$
- Current best known complexity: $O(m \cdot n)$
 - For graphs with $m \ge n^{1+\epsilon}$ [King,Rao,Tarjan 1992/1994] (for every constant $\epsilon > 0$)
 - For sparse graphs with $m \leq n^{16/15-\delta}$

[Orlin, 2013]

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique
- Examples:
 - related network flow problems
 - computation of small cuts
 - computation of matchings
 - computing disjoint paths
 - scheduling problems
 - assignment problems with some side constraints

- ...

Undirected Edges and Vertex Capacities

Undirected Edges:

• Undirected edge $\{u, v\}$: add edges (u, v) and (v, u) to network

Vertex Capacities:

- Not only edges, but also (or only) nodes have capacities
- Capacity c_v of node $v \notin \{s, t\}$:

$$f^{\rm in}(v) = f^{\rm out}(v) \le c_v$$

• Replace node v by edge $e_v = \{v_{in}, v_{out}\}$:

Minimum s-t Cut wax flow win cut theorem

Size of cut (A, B): number of edges crossing the cut

Size of cut = # edges crossing the cut $Chouse flow network 1) make edges directed <math>-\infty$ ∞ 2) edge cap. = 1 Size of cut in G = Cap. cut in flow network

Edge Connectivity

Definition: A graph G = (V, E) is k-edge connected for an integer $k \ge 1$ if the graph $G_X = (V, E \setminus X)$ is connected for every edge set

Goal: Compute edge connectivity $\lambda(G)$ of *G* (and edge set *X* of size $\lambda(G)$ that divides *G* into ≥ 2 parts)

- minimum set X is a minimum $\underline{s-t}$ cut for some $\underline{s,t} \in V$ - Actually for all s, t in different components of $G_X = (V, E \setminus X)$
- Possible algorithm: fix s and find min s-t cut for all $t \neq s$

Algorithm Theory, WS 2018/19

Minimum *s*-*t* Vertex-Cut

Given: undirected graph
$$G = (V, E)$$
, nodes $s, t \in V$

s-*t* vertex cut: Set $X \subset V$ such that $s, t \notin X$ and s and t are in different components of the sub-graph $G[V \setminus X]$ induced by $V \setminus X$

S.

Size of vertex cut: |X|

Objective: find <u>s-t</u> vertex-cut of minimum size

- Replace undirected edge $\{u, v\}$ by (u, v) and (v, u)
- Compute max s-t flow for edge capacities ∞ and node capacities

$$c_v = 1$$
 for $v \neq s, t$

- Replace each node v by v_{in} and v_{out} :
- Min^vedge cut corresponds to min vertex cut in G

Vertex Connectivity

Definition: A graph G = (V, E) is k-vertex connected for an integer $k \ge 1$ if the sub-graph $G[V \setminus X]$ induced by $V \setminus X$ is connected for every edge set

$$X \subseteq V, |X| \leq k - 1.$$

hered to remove at least k nodes to make G disconnected

$$\frac{\text{Verfex coun. : } R(G)}{\text{Max. k s.t.}}$$

$$K = K(G)$$

$$K = K(G)$$

Goal: Compute vertex connectivity $\kappa(G)$ of G(and node set X of size $\kappa(G)$ that divides G into ≥ 2 parts)

• Compute minimum *s*-*t* vertex cut for all *s* and all $t \neq s$

running time:
$$O(m \cdot n^3) = O(m \cdot n \cdot R^2(6))$$

Algorithm Theory, WS 2018/19

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many edge-disjoint *s*-*t* paths as possible

- Solution:
- Find max s-t flow in G with edge capacities $c_e = 1$ for all $e \in E$

Flow \underline{f} induces $|\underline{f}|$ edge-disjoint paths:

integer

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| edge-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Vertex-Disjoint Paths

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many internally vertex-disjoint *s*-*t* paths as possible

Solution:

• Find max *s*-*t* flow in *G* with node capacities $c_v = 1$ for all $v \in V$

Flow f induces |f| vertex-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| vertex-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Theorem: (edge version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum <u>s-t</u> (edge) cut equals the maximum number of pairwise edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum s-t vertex cut equals the maximum number of pairwise internally vertex-disjoint paths from s to t

$$s := \widehat{x}_{|x|=k} \cdot \epsilon$$

 Both versions can be seen as a special case of the max flow min cut theorem

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	w _i	l _i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	69	<u>12</u>	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	74	9	5	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Only wins/losses possible (no ties), winner: team with most wins
- Which teams can still win (as least as many wins as top team)?
- Boston is eliminated (cannot win):
 - Boston can get at most 78 wins, New York already has 81 wins
- If for some $\underline{i, j}: w_i + \underline{r_i} < w_j \rightarrow \text{team } i \text{ is eliminated}$
- Sufficient condition, but not a necessary one!

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	W _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	69	12	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
T <u>ampa Bay</u>	79	74	9	5	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Can Toronto still finish first?
- Toronto can get 82 > 81 wins, but: NY and Tampa have to play 5 more times against each other
 → if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins
- Hence: Toronto cannot finish first
- How about the others? How can we solve this in general?

Max Flow Formulation Team 3 will have $\leq \omega_3 + r_3$ wins $\omega_i: # wins of team i so far r_1: # rem. gauces of team i$

• Can team 3 finish with most wins?

• Team 3 can finish first iff all source-game edges are saturated

Reason for Elimination

AL East: Aug 30, 1996

Team	Wins	Losses	To Play	Against = r_{ij}				
i	W _i	ℓ_i	r _i	NY	Balt.	Bost.	Tor.	Detr.
New York	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0		0
Detroit	49	86	27	3	4	0	0	-

- Detroit could finish with 49 + 27 = 76 wins
- - Consider $R = \{NY, Bal, Bos, Tor\}$ Have together already won w(R) = 278 games
 - Must together win at least r(R) = 27 more games
- On average, teams in R win $\frac{278+27}{4} = \underline{76.25}$ games

Algorithm Theory, WS 2018/19

Reason for Elimination

Team 3 cannot finish first ⇔ min cut of size < "all blue edges"

Certificate of elimination:

Team $\underline{x} \in X$ is eliminated by R if $\frac{w(R) + r(R)}{|R|} > w_x + r_x.$

Reason for Elimination

Theorem: Team x is eliminated if and only if there exists a subset $R \subseteq X$ of the teams X such that x is eliminated by R.

Proof Idea:

- Minimum cut gives a certificate...
- If x is eliminated, max flow solution does not saturate all outgoing edges of the source.
- Team nodes of unsaturated source-game edges are saturated
- Source side of min cut contains all teams of saturated team-dest. edges of unsaturated source-game edges
- Set of team nodes in source-side of min cut give a certificate *R*

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands are exactly satisfied

• The circulation problem is a feasibility rather than a maximization problem

Circulations with Demands: Formally

Given: Directed network G = (V, E) with

- Edge capacities $c_e > 0$ for all $e \in E$
- Node demands $\underline{d}_{v} \in \mathbb{R}$ for all $v \in V$
 - $d_v > 0$: node needs flow and therefore is a sink
 - $d_v < 0$: node has a supply of $-d_v$ and is therefore a source
 - $d_v = 0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E: 0 \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{\text{in}}(v) f^{\text{out}}(v) = \underline{d_v}$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Algorithm Theory, WS 2018/19

Example

Condition on Demands

Claim: If there exists a feasible circulation with demands d_v for $d_{v} = f^{in}(v) - f^{out}(v)$ $v \in V$, then

Proof:

•
$$\underbrace{\sum_{v} d_{v}}_{v} = \sum_{v} \left(f^{\text{in}}(v) - f^{\text{out}}(v) \right) = \underbrace{\sum_{v} f^{\text{in}}_{v}}_{v} - \underbrace{\sum_{v} f^{\text{out}}_{v}}_{v} = O$$

 $\sum_{\nu \in V} d_{\nu} = 0.$

• f(e) of each edge e appears twice in the above sum with different signs \rightarrow overall sum is 0

Total supply = total demand:

Define
$$\underline{D} \coloneqq \sum_{v:d_v > 0} d_v = \sum_{v:d_v < 0} -d_v$$

Algorithm Theory, WS 2018/19

Fabian Kuhn

Reduction to Maximum Flow

• Add "super-source" s^* and "super-sink" t^* to network

Example

Formally...

Reduction: Get graph G' from graph as follows

- Node set of G' is $V \cup \{s^*, t^*\}$
- Edge set is *E* and edges
 - $-(s^*, v)$ for all v with $d_v < 0$, capacity of edge is $-d_v$
 - (v, t^*) for all v with $d_v > 0$, capacity of edge is $\underline{d_v}$

Observations:

- Capacity of min s^*-t^* cut is at most D (e.g., the cut $(s^*, V \cup \{t^*\})$
- A feasible circulation on G can be turned into a feasible flow of value <u>D</u> of G' by saturating all (s*, v) and (v, t*) edges.
- Any flow of G' of value D induces a feasible circulation on G
 - (s^*, v) and (v, t^*) edges are saturated
 - By removing these edges, we get exactly the demand constraints

Circulation with Demands

Theorem: There is a feasible circulation with demands $d_v, v \in V$ on graph G if and only if there is a flow of value D on G'.

If all capacities and demands are integers, there is an integer circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands $d_v, v \in V$ if and only if for all cuts (A, B), $z \neq 1$

$$\sum_{v\in B} d_v \leq c(A,B).$$

Circulation: Demands and Lower Bounds

Given: Directed network G = (V, E) with

- Edge capacities $c_e > 0$ and lower bounds $0 \le \ell_e \le c_e$ for $e \in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $d_{v} > 0$: node needs flow and therefore is a sink
 - $-d_{v} < 0$: node has a supply of $-d_{v}$ and is therefore a source
 - $d_v = 0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E: \ \ell_e \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Algorithm Theory, WS 2018/19