

Chapter 6 Graph Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size n/2 (every node is matched)

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
 - A matching that cannot be extended...
- Vertex Cover: set $S \subseteq V$ of nodes such that

$$\forall \{u,v\} \in E, \qquad \{u,v\} \cap S \neq \emptyset.$$

A vertex cover covers all edges by incident nodes

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, $|S| \le 2|M|$

Proof:

• M is maximal: for every edge $\{u,v\} \in E$, either u or v (or both) are matched

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Maximal Matching Approximation

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$|M| \geq \frac{|M^*|}{2}.$$

Proof:

• Let S^* be a minimum vertex cover:

$$|M^*| \le |S^*| \le 2|M|$$

Theorem: The set of all matched nodes of a maximal matching M is a vertex cover S of size at most twice the size of a min. vertex cover.

Proof:

• Let S^* be a minimum vertex cover

$$|S| = 2|M| \le 2|S^*|$$

Augmenting Paths

Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

alternating path

 Matching M can be improved using an augmenting path by switching the role of each edge along the path

Augmenting Paths

Theorem: A matching M of G = (V, E) is maximum if and only if there is no augmenting path.

Proof:

• Consider non-max. matching M and max. matching M^* and define

$$F \coloneqq M \setminus M^*, \qquad F^* \coloneqq M^* \setminus M$$

- Note that $F \cap F^* = \emptyset$ and $|F| < |F^*|$
- Each node $v \in V$ is incident to at most one edge in both F and F^*
- $F \cup F^*$ induces even cycles and paths

Finding Augmenting Paths

Blossoms

• If we find an odd cycle...

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'

Also: The matching M can be computed efficiently from M'.

Edmond's Blossom Algorithm

Algorithm Sketch:

- Build a tree for each free node
- 2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
 - 1. If v is an unexplored node, v is matched to some neighbor w: add w to the tree (w is now explored)
 - 2. If v is explored and in the same tree: at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow blossom found
 - 3. If v is explored and in another tree at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow augmenting path found

Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O(mn^2)$.

Maximum Weight Bipartite Matching

Let's again go back to bipartite graphs...

Given: Bipartite graph $G = (U \dot{\cup} V, E)$ with edge weights $c_e \geq 0$

Goal: Find a matching *M* of maximum total weight

Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is equivalent to finding a minimum weight perfect matching in a complete bipartite graph.

- 1. Turn into maximum weight perfect matching
 - add dummy nodes to get two equal-sized sides
 - add edges of weight 0 to make graph complete bipartite
- 2. Replace weights: $c'_e \coloneqq \max_f \{c_f\} c_e$

As an Integer Linear Program

We can formulate the problem as an integer linear program

Var. x_{uv} for every edge $(u, v) \in U \times V$ to encode matching M:

$$x_{uv} = \begin{cases} 1, & \text{if } \{u, v\} \in M \\ 0, & \text{if } \{u, v\} \notin M \end{cases}$$

Minimum Weight Perfect Matching

Linear Programming (LP) Relaxation

Linear Program (LP)

 Continuous optimization problem on multiple variables with a linear objective function and a set of linear side constraints

LP Relaxation of Minimum Weight Perfect Matching

• Weight c_{uv} & variable x_{uv} for ever edge $(u, v) \in U \times V$

$$\min \sum_{(u,v)\in U\times V} c_{uv}\cdot x_{uv}$$

s.t.

$$\forall u \in U \colon \sum_{v \in V} x_{uv} = 1,$$

$$\forall v \in V \colon \sum_{u \in U} x_{uv} = 1$$

$$\forall u \in U, \forall v \in V: x_{uv} \geq 0$$

Dual Problem

- Every linear program has a dual linear program
 - The dual of a minimization problem is a maximization problem
 - Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

- Assign a variable $a_u \ge 0$ to each node $u \in U$ and a variable $b_v \ge 0$ to each node $v \in V$
- Condition: for every edge $(u,v) \in U \times V$: $a_u + b_v \leq c_{uv}$
- Given perfect matching *M*:

$$\sum_{(u,v)\in M} c_{uv} \ge \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

Dual Linear Program

• Variables $a_u \ge 0$ for $u \in U$ and $b_v \ge 0$ for $v \in V$

$$\max \sum_{u \in U} a_u + \sum_{v \in V} b_v$$

$$s. t.$$

$$\forall u \in U, \forall v \in V: \ a_u + b_v \le c_{uv}$$

For every perfect matching M:

$$\sum_{(u,v)\in M} c_{uv} \ge \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

Complementary Slackness

A perfect matching M is optimal if

$$\sum_{(u,v)\in M} c_{uv} = \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

• In that case, for every $(u, v) \in M$

$$\mathbf{w_{uv}} \coloneqq c_{uv} - a_u - b_v = 0$$

- In this case, M is also an optimal solution to the LP relaxation of the problem
- Every optimal LP solution can be characterized by such a property,
 which is then generally referred to as complementary slackness
- Goal: Find a dual solution a_u , b_v and a perfect matching such that the complementary slackness condition is satisfied!
 - i.e., for every matching edge (u, v), we want $w_{uv} = 0$
 - We then know that the matching is optimal!

Algorithm Overview

- Start with any feasible dual solution a_u , b_v
 - i.e., solution satisfies that for all (u, v): $c_{uv} \ge a_u + b_v$
- Let E_0 be the edges for which $w_{uv} = 0$
 - Recall that $w_{uv} = c_{uv} a_u b_v$
- Compute maximum cardinality matching M of E_0
- All edges (u, v) of M satisfy $w_{uv} = 0$
 - Complementary slackness if satisfied
 - If M is a perfect matching, we are done
- If M is not a perfect matching, dual solution can be improved

Marked Nodes

Define set of marked nodes *L*:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U

edges E_0 with $w_{uv} = 0$

optimal matching M

 L_0 : unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L_0

Marked Nodes

Define set of marked nodes *L*:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U

edges E_0 with $w_{uv} = 0$

optimal matching M

 L_0 : unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L_0

Marked Nodes – Vertex Cover

Lemma:

- a) There are no E_0 -edges between $U \cap L$ and $V \setminus L$
- b) The set $(U \setminus L) \cup (V \cap L)$ is a vertex cover of size |M| of the graph induced by E_0

Improved Dual Solution

Recall: all edges (u, v) between $U \cap L$ and $V \setminus L$ have $w_{uv} > 0$

New dual solution:

$$\delta \coloneqq \min_{u \in U \cap L, v \in V \setminus L} \{w_{uv}\}$$

$$a'_{u} \coloneqq \begin{cases} a_{u}, & \text{if } u \in U \setminus L \\ a_{u} + \delta, & \text{if } u \in U \cap L \end{cases}$$

$$b'_{v} \coloneqq \begin{cases} b_{v}, & \text{if } v \in V \setminus L \\ a_{v} - \delta, & \text{if } v \in V \cap L \end{cases}$$

Claim: New dual solution is feasible (all w_{uv} remain ≥ 0)

Improved Dual Solution

Lemma: Obj. value of the dual solution grows by $\delta\left(\frac{n}{2}-|M|\right)$.

Proof:

$$\delta \coloneqq \min_{u \in U \cap L, \, v \in V \setminus L} \{w_{uv}\}, \qquad a'_u \coloneqq \begin{cases} a_u, & \text{if } u \in U \setminus L \\ a_u + \delta, & \text{if } u \in U \cap L \end{cases} \qquad b'_v \coloneqq \begin{cases} b_v, & \text{if } v \in V \setminus L \\ a_v - \delta, & \text{if } v \in V \cap L \end{cases}$$

Termination

Some terminology

- Old dual solution: a_u , b_v , $w_{uv} \coloneqq c_{uv} a_u b_v$
- New dual solution: a'_u , b'_v , $w'_{uv} \coloneqq c_{uv} a'_u b'_v$
- $E_0 := \{(u, v) : w_{uv} = 0\}, \quad E'_0 := \{(u, v) : w'_{uv} = 0\}$
- M, M': max. cardinality matchings of graphs ind. By E_0 , E'_0

Claim: $|M'| \ge |M|$ and if |M'| = |M|, we can assume that M = M'.

Termination

Lemma: The algorithm terminates in at most $O(n^2)$ iterations.

Proof:

• Each iteration: M'>M or M'=M and $|V\cap L'|>|V\cap L|$

Min. Weight Perfect Matching: Summary

Theorem: A minimum weight perfect matching can be computed in time $O(n^4)$.

- First dual solution: e.g., $a_u = 0$, $b_v = \min_{u \in U} c_{uv}$
- Compute set E_0 : $O(n^2)$
- Compute max. cardinality matching of graph induced by E_0
 - First iteration: $O(n^2) \cdot O(n) = O(n^3)$
 - Other iterations: $O(n^2) \cdot O(1 + |M'| |M|)$

Matching Algorithms

We have seen:

- O(mn) time alg. to compute a max. matching in bipartite graphs
- $O(mn^2)$ time alg. to compute a max. matching in *general graphs*

Better algorithms:

• Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of maximum total weight
- Bipartite graphs: polynomial-time primal-dual algorithm
- General graphs: can also be solved in polynomial time
 (Edmond's algorithms is used as blackbox)