
Chapter 7

Randomization

Algorithm Theory
WS 2018/19

Fabian Kuhn

Algorithm Theory, WS 2018/19 Fabian Kuhn 2

Randomization

Randomized Algorithm:

• An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to

• Make algorithms faster

• Make algorithms simpler

• Make the analysis simpler
– Sometimes it’s also the opposite…

• Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
– True in some computational models (e.g., for distributed algorithms)

– Not clear in the standard sequential model

Algorithm Theory, WS 2018/19 Fabian Kuhn 3

Contention Resolution

A simple starter example (from distributed computing)

• Allows to introduce important concepts

• … and to repeat some basic probability theory

Setting:

• 𝑛 processes, 1 resource
(e.g., communication channel, shared database, …)

• There are time slots 1,2,3,…

• In each time slot, only one client can access the resource

• All clients need to regularly access the resource

• If client 𝑖 tries to access the resource in slot 𝑡:
– Successful iff no other client tries to access the resource in slot 𝑡

Algorithm Theory, WS 2018/19 Fabian Kuhn 4

Algorithm

Algorithm Ideas:

• Accessing the resource deterministically seems hard
– need to make sure that processes access the resource at different times

– or at least: often only a single process tries to access the resource

• Randomized solution:
In each time slot, each process tries with probability 𝑝.

Analysis:

• How large should 𝑝 be?

• How long does it take until some process 𝑖 succeeds?

• How long does it take until all processes succeed?

• What are the probabilistic guarantees?

Algorithm Theory, WS 2018/19 Fabian Kuhn 5

Analysis

Events:

• 𝓐𝒙,𝒕: process 𝑥 tries to access the resource in time slot 𝑡

– Complementary event: 𝒜𝑥,𝑡

ℙ 𝒜𝑥,𝑡 = 𝑝, ℙ 𝒜𝑥,𝑡 = 1 − 𝑝

• 𝓢𝒙,𝒕: process 𝑥 is successful in time slot 𝑡

𝒮𝑥,𝑡 = 𝒜𝑥,𝑡 ∩ ሩ

𝑦≠𝑥

𝒜𝑦,𝑡

• Success probability (for process 𝑥):

Algorithm Theory, WS 2018/19 Fabian Kuhn 6

Fixing 𝑝

• ℙ 𝒮𝑥,𝑡 = 𝑝 1 − 𝑝 𝑛−1 is maximized for

𝒑 =
𝟏

𝒏
⟹ ℙ 𝒮𝑥,𝑡 =

1

𝑛
1 −

1

𝑛

𝑛−1

.

• Asymptotics:

For 𝑛 ≥ 2:
1

4
≤ 1 −

1

𝑛

𝑛

<
1

𝑒
< 1 −

1

𝑛

𝑛−1

≤
1

2

• Success probability:

𝟏

𝒆𝒏
< ℙ 𝓢𝒙,𝒕 ≤

𝟏

𝟐𝒏

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

Time Until First Success

Random Variable 𝑻𝒙:

• 𝑇𝑥 = 𝑡 if proc. 𝑥 is successful in slot 𝑡 for the first time

• Distribution:

• 𝑇𝑥 is geometrically distributed with parameter

𝑞 = ℙ 𝒮𝑥,𝑡 =
1

𝑛
1 −

1

𝑛

𝑛−1

>
1

𝑒𝑛
.

• Expected time until first success:

𝔼 𝑻𝒙 =
𝟏

𝒒
< 𝒆𝒏

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

Time Until First Success

Failure Event 𝓕𝒙,𝒕: Process 𝑥 does not succeed in time slots 1,… , 𝑡

• The events 𝒮𝑥,𝑡 are independent for different 𝑡:

ℙ ℱ𝑥,𝑡 = ℙ ሩ

𝑟=1

𝑡

𝒮𝑥,𝑟 =ෑ

𝑟=1

𝑡

ℙ 𝒮𝑥,𝑟 = 1 − ℙ 𝒮𝑥,𝑟
𝑡

• We know that ℙ 𝒮𝑥,𝑟 > Τ1 𝑒𝑛:

ℙ ℱ𝑥,𝑡 < 1 −
1

𝑒𝑛

𝑡

< 𝑒− ൗ𝑡 𝑒𝑛

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

Time Until First Success

No success by time 𝑡: ℙ ℱ𝑥,𝑡 < 𝑒− Τ𝑡 𝑒𝑛

𝑡 = ⌈𝑒𝑛⌉: ℙ ℱ𝑥,𝑡 < Τ1 𝑒

• Generally if 𝑡 = Θ(𝑛): constant success probability

𝑡 ≥ 𝑒𝑛 ⋅ 𝑐 ⋅ ln 𝑛: ℙ ℱ𝑥,𝑡 < ൗ1 𝑒𝑐⋅ln 𝑛 = Τ1 𝑛𝑐

• For success probability 1 − Τ1 𝑛𝑐, we need 𝑡 = Θ(𝑛 log 𝑛).

• We say that 𝑥 succeeds with high probability in 𝑂(𝑛 log 𝑛) time.

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

Time Until All Processes Succeed

Event 𝓕𝒕: some process has not succeeded by time 𝑡

ℱ𝑡 =ራ

𝑥=1

𝑛

ℱ𝑥,𝑡

Union Bound: For events ℰ1, … , ℰ𝑘 ,

ℙ ራ

𝑥

𝑘

ℰ𝑥 ≤

𝑥

𝑘

ℙ ℰ𝑥

Probability that not all processes have succeeded by time 𝑡:

ℙ ℱ𝑡 = ℙ ራ

𝑥=1

𝑛

ℱ𝑥,𝑡 ≤

𝑥=1

𝑛

ℙ ℱ𝑥,𝑡 < 𝑛 ⋅ 𝑒− ൗ𝑡 𝑒𝑛 .

Algorithm Theory, WS 2018/19 Fabian Kuhn 11

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first
𝑂 𝑛 log 𝑛 time slots.

Proof:

• ℙ ℱ𝑡 < 𝑛 ⋅ 𝑒−𝑡/𝑒𝑛

• Set 𝑡 = ⌈𝑒𝑛 ⋅ 𝑐 + 1 ln 𝑛⌉

Remark: Θ 𝑛 log 𝑛 time slots are necessary for all processes to
succeed with reasonable probability

Algorithm Theory, WS 2018/19 Fabian Kuhn 12

Primality Testing

Problem: Given a natural number 𝑛 ≥ 2, is 𝑛 a prime number?

Simple primality test:

1. if 𝑛 is even then

2. return 𝑛 = 2

3. for 𝑖 ≔ 1 to Τ𝑛 2 do

4. if 2𝑖 + 1 divides 𝑛 then

5. return false

6. return true

• Running time: 𝑂 𝑛

Algorithm Theory, WS 2018/19 Fabian Kuhn 13

A Better Algorithm?

• How can we test primality efficiently?

• We need a little bit of basic number theory…

Square Roots of Unity: In ℤ𝑝
∗ , where 𝑝 is a prime, the only

solutions of the equation 𝑥2 ≡ 1 (mod 𝑝) are 𝑥 ≡ ±1 (mod 𝑝)

• If we find an 𝑥 ≢ ±1 (mod 𝑛) such that 𝑥2 ≡ 1 (mod 𝑛), we
can conclude that 𝑛 is not a prime.

Algorithm Theory, WS 2018/19 Fabian Kuhn 14

Algorithm Idea

Claim: Let 𝑝 > 2 be a prime number such that 𝑝 − 1 = 2𝑠𝑑 for an
integer 𝑠 ≥ 1 and some odd integer 𝑑 ≥ 3. Then for all 𝑎 ∈ ℤ𝑝

∗ ,

𝑎𝑑 ≡ 1 mod 𝑝 𝐨𝐫 𝑎2
𝑟𝑑 ≡ −1 mod 𝑝 for some 0 ≤ 𝑟 < 𝑠.

Proof:

• Fermat’s Little Theorem: Given a prime number 𝑝,

∀𝑎 ∈ ℤ𝑝
∗ : 𝑎𝑝−1 ≡ 1 (mod 𝑝)

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

Primality Test

We have: If 𝑛 is an odd prime and 𝑛 − 1 = 2𝑠𝑑 for an integer 𝑠 ≥ 1
and an odd integer 𝑑 ≥ 3. Then for all 𝑎 ∈ {1,… , 𝑛 − 1},

𝑎𝑑 ≡ 1 mod 𝑛 𝐨𝐫 𝑎2
𝑟𝑑 ≡ −1 mod 𝑛 for some 0 ≤ 𝑟 < 𝑠.

Idea: If we find an 𝑎 ∈ {1,… , 𝑛 − 1} such that

𝑎𝑑 ≢ 1 mod 𝑛 𝐚𝐧𝐝 𝑎2
𝑟𝑑 ≢ −1 mod 𝑛 for all 0 ≤ 𝑟 < 𝑠,

we can conclude that 𝑛 is not a prime.

• For every odd composite 𝑛 > 2, at least Τ3 4 of all possible 𝑎
satisfy the above condition

• How can we find such a witness 𝑎 efficiently?

Algorithm Theory, WS 2018/19 Fabian Kuhn 16

Miller-Rabin Primality Test

• Given a natural number 𝑛 ≥ 2, is 𝑛 a prime number?

Miller-Rabin Test:

1. if 𝑛 is even then return 𝑛 = 2

2. compute 𝑠, 𝑑 such that 𝑛 − 1 = 2𝑠𝑑;

3. choose 𝑎 ∈ {2,… , 𝑛 − 2} uniformly at random;

4. 𝑥 ≔ 𝑎𝑑 mod 𝑛;

5. if 𝑥 = 1 or 𝑥 = 𝑛 − 1 then return probably prime;

6. for 𝑟 ≔ 1 to 𝑠 − 1 do

7. 𝑥 ≔ 𝑥2 mod 𝑛;

8. if 𝑥 = 𝑛 − 1 then return probably prime;

9. return composite;

Algorithm Theory, WS 2018/19 Fabian Kuhn 17

Analysis

Theorem:

• If 𝑛 is prime, the Miller-Rabin test always returns true.

• If 𝑛 is composite, the Miller-Rabin test returns false with
probability at least Τ3 4.

Proof:

• If 𝑛 is prime, the test works for all values of 𝑎

• If 𝑛 is composite, we need to pick a good witness 𝑎

Corollary: If the Miller-Rabin test is repeated 𝑘 times, it fails to
detect a composite number 𝑛 with probability at most 4−𝑘.

Algorithm Theory, WS 2018/19 Fabian Kuhn 18

Running Time

Cost of Modular Arithmetic:

• Representation of a number 𝑥 ∈ ℤ𝑛: 𝑂(log 𝑛) bits

• Cost of adding two numbers 𝑥 + 𝑦 mod 𝑛:

• Cost of multiplying two numbers 𝑥 ⋅ 𝑦 mod 𝑛:
– It’s like multiplying degree 𝑂(log 𝑛) polynomials
 use FFT to compute 𝑧 = 𝑥 ⋅ 𝑦

Algorithm Theory, WS 2018/19 Fabian Kuhn 19

Running Time

Cost of exponentiation 𝑥𝑑 mod 𝑛:

• Can be done using 𝑂(log 𝑑) multiplications

• Base-2 representation of 𝑑: 𝑑 = σ𝑖=0
⌊log 𝑑⌋

𝑑𝑖2
𝑖

• Fast exponentiation:
1. 𝑦 ≔ 1;

2. for 𝑖 ≔ ⌊log 𝑑⌋ to 0 do

3. 𝑦 ≔ 𝑦2 mod 𝑛;

4. if 𝑑𝑖 = 1 then 𝑦 ≔ 𝑦 ⋅ 𝑥 mod 𝑛;

5. return 𝑦;

• Example: 𝑑 = 22 = 101102

Algorithm Theory, WS 2018/19 Fabian Kuhn 20

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented
with running time 𝑂 log2 𝑛 ⋅ log log 𝑛 ⋅ log log log 𝑛 .

1. if 𝑛 is even then return 𝑛 = 2

2. compute 𝑠, 𝑑 such that 𝑛 − 1 = 2𝑠𝑑;

3. choose 𝑎 ∈ {2,… , 𝑛 − 2} uniformly at random;

4. 𝑥 ≔ 𝑎𝑑 mod 𝑛;

5. if 𝑥 = 1 or 𝑥 = 𝑛 − 1 then return probably prime;

6. for 𝑟 ≔ 1 to 𝑠 − 1 do

7. 𝑥 ≔ 𝑥2 mod 𝑛;

8. if 𝑥 = 𝑛 − 1 then return probably prime;

9. return composite;

Algorithm Theory, WS 2018/19 Fabian Kuhn 21

Deterministic Primality Test

• If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

 It is then sufficient to try all 𝑎 ∈ 1,… , 𝑂 log2 𝑛

• It has long not been proven whether a deterministic,
polynomial-time algorithm exists

• In 2002, Agrawal, Kayal, and Saxena gave an ෨𝑂 log12 𝑛 -time
deterministic algorithm

– Has been improved to ෨𝑂 log6 𝑛

• In practice, the randomized Miller-Rabin test is still the fastest
algorithm

