Chapter 7
Randomization

Algorithm Theory
WS 2018/19

Fabian Kuhn

UNI
I

FREIBURG

Randomization

Randomized Algorithm:

* An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler
 Make the analysis simpler

— Sometimes it’s also the opposite...
* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
— True in some computational models (e.g., for distributed algorithms)
— Not clear in the standard sequential model

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI
f

FREIBURG

Randomized Quicksort

Quicksort:

Sy <v % S, > v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in §;

partition S into S, with elements < v,

—_—

and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI
f

FREIBURG

Randomized Quicksort Analysis

UNI

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:
e Let’s just count the number of comparisons

* In the partitioning step, all n — 1 non-pivot elements have to be
compared to the pivot

* Number of comparisons: / qandont

n—1 4+ #comparisons in recursive callsf

* If rank of pivotis r:
recursive calls withr — 1 and n — r elements

-\ n-C

— S Y1 D—— A

\,2. — C—

Algorithm Theory, WS 2018/19 Fabian Kuhn 4

FREIBURG

FREIBURG

Law of Total Expectation

UNI

e Given arandom variable X and J A

 asetofevents A4, ..., A; that partition ()
— E.g., for a second random variable Y, we could have

A ={w e Q:Y(w) =i}

Law of Total Expectation &

/
ZP(A) EX | A;] ZP(Y y) E[X|Y =]

Example: fEDQ . 3¢

* X:outcome of rolling a die
. AO = {X is even}, Ay = {X is odd}

Qﬂ/—\{
—57" E(X] = TR BXIAD < TA)-E XA
N e as

Algorithm Theory, WS 2018/19 Fablan Kuhn 5

Randomized Quicksort Analysis

UNI

FREIBURG

Random variables: ‘E[,C] ‘-“EL"" * Ce C"‘J

* C:total number of comparisons (for a given array of length n)
* R:rank of first pivot R&dl -5

* (p, C,: number of comparisons for the 2 recursive calls
4 (
E[C] =n —1+E[C,] + E[C]

Law of Total Expectatlon

=ZIP(R—7") IE[C|R—r]

E[C]

\

PR=r)-(n—1+ [E[CglR =r]| + E[C,|R =T1])

=i

r=1 Somu acm7 Qoekuk on aemb
o Wb«'\ v ok Longth =%

Algorithm Theory, WS 2018/19 Fabian Kuhn 6

Randomized Quicksort Analysis

UNI
f

FREIBURG

We have seen that: T(R=%)= %
n
E[C] :ZIP’(R =r)-(n—1+W+E[Cr|R =1])
Ty =1 (-1 Tn-™)

Define:
* T(n): expected number of comparisons when sorting n elements
E[C] =T(n)
E[C,IR=71]=T(r —1)
E[C/IR=r]=T(n—r)

Recursion:
n

T(n)=Z%-(n—1+T(r—1)+T(n—r))

r=1

T(0) = T(1) = 0

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

UNI
FREIBURG

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksort is T_(’_I_’l) < 2nlinn.

Proof: (‘07:4“<J“*‘*W ") O —g
T(n)=Z%-(n—1+T(r—1)+T(n—r)), T(O)=E
r=1
= n=l + —:‘--:‘%(TGHT(\A—L-!)) /z-ﬁ
= V\—\+-n7-'~§’r(i) /
T4

b
n
)
3 V\-\+%jx¢dﬂd¥ sfﬂ“ | L P x
: ‘15‘\";6 o WZh-1 ©

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

UNI

Randomized Quicksort Analysis

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
4_ n
T(n)Sn—1+£-fxlnxdx
1
TG Cuthy v (\ \
WEn-y + = — - = + -
— 191 2 1 ¢«

j — _lenx x>
xInx dx = — T

|
n

=n-l+Qubu - n +

‘-—‘2\1\@4\4 4((7(\‘0(2‘4/@4"‘ 0

"0 = E1C 1= 2uban

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

URG

Alternative Analysis

zl.u
:I.L

Array to sort: 7,3,1,10,14,8,12,9_,_4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

7.
3(1,4 5©2.__J \L""’/ g@g/lflg 'l

_—
C?, 4,22 (e (is, S 9,‘(] (w <R

A\ 7\ 7 "\

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

UNI

Comparisons

 Comparisons are only between pivot and non-pivot elements

* Every element can only be the pivot once:
— every 2 elements can only be compared once!

W.l.0.g., assume that the elements to sortare 1,2, ..., n

Elements i and j are compared if and only if either L or j is a

pivot before any element h:i < h < j is chosen as pivot
-

— i.e., iff i is an ancestor of j or j is an ancestor of i

\ ¢ > “
[N
1} ¢ ¢

| i\
5-(‘-\-\ e(ew.wc(-s

-

P(comparison betw. i and j) =j 11

Algorithm Theory, WS 2018/19 Fabian Kuhn 11

FREIBURG

Counting Comparisons

UNI

FREIBURG

Random variable for every pair of elements (i, j):

1, if there is a comparison between i and j
Xij — .
0, otherwise

VA

ELyij = i+

j—i+\

2.
(]F()(;j’n = 3=+

Number of comparisons: X

=

i<j

* Whatis E[X]?

Algorithm Theory, WS 2018/19 Fabian Kuhn

12

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.
Proof:

* Linearity of expectation:
For all random variables X4, ..., X,, and all a4, ..., a,, € R,

n
E [z ain'
[

X=S X, EDO=(E[

t<)

Cli[E[Xi] .

=1

<)

- Z LX)
=)’T222 -

= <t
Algorithm Theory, WS 2018/19 Fabian Kuhn

13

UNI

Randomized Quicksort Analysis

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n-1 n 1 n-1n-i+1
BN=2),), i 2), Lk
LX] L j—i+1 : k
l=1\]=l+1 ¥ =1 k=2
w=\ n |
\< —
‘\iﬂlr\uow‘c Seres! Z‘ 2 k

P W) —
T <+ Hw) -
o =2 (m—\)(Hm—l)

‘W

é@u\q

H(M)é\'\reum
< 2ulan

IJ

Algorithm Theory, WS 2018/19 Fabian Kuhn 14

Quicksort: High Probability Bound

UNI
FREIBURG

 We have seen that the number of comparisons of randomized
quicksort is O(nlogn) in expectation.

 (Can we also show that the number of comparisons is
O(nlogn) with high probability? |- =

n

 Recall:

On each recursion level, each pivot is compared once with
—_— . ‘e “« ”
each other element that is still in the same “part

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

UNI

Counting Number of Comparisons

 We looked at 2 ways to count the number of comparisons
— recursive characterization of the expected number
— number of different pairs of values that are compared

Let’s consider yet another way:
 Each comparison is between a pivot and a non-pivot

* How many times is a specific array eIementix compared as a
non-pivot?

Value x is compared as a non-pivot to a pivot once in every
— ———

recursion level until one of the following two conditions apply:
#csm‘;. o{.)f aq uowf"foa
= &Q‘)ut 00(490\ X becowmas
?\ro'\r A(OIAL

Algorithm Theory, WS 2018/19 Fabian Kuhn 16

1. xischosen as a pivot
2. xisalone

FREIBURG

Successful Recursion Level Ki=»

UNI
f

FREIBURG

* Consider a specific recursion level £ [~ d
¢ v _
e
* Assume that at the beginning of recursion level £, element x is

in a sub-array of length K, that still needs to be sorted.

* |If x has been chosen as a pivot before level £, we set K, := 1

Definition: We say that recursion level £ is successful for element

X iff the following is true:

2
Kera =1 or Kppq s5-Ky

L x))

Algorithm Theory, WS 2018/19 Fabian Kuhn 17

Successful Recursion Level

UNI
FREIBURG

Lemma: For every recursion level £ and every array element x, it
holds that level £ is successful for x with probability at least 1/5,
independently of what happens in other recursion levels.

Proof: K,> | _
—\
L—% Keﬂ:‘

— oeE—— —i
L———\(—_—"C—V_‘L’—{\d

e

K K K
‘/‘5 ¢/5 ¢/ 2

{ preot i 1 oo widdle pard

= bo«l\ &Mﬂ‘.u&u& am79 (\ﬁ‘\hez
SD'(&, ZS-Ke = (*(‘E.KQ

—® Gmb«(;‘\‘é‘() (—»r ts 2

il
2

Algorithm Theory, WS 2018/19 Fabian Kuhn 18

Number of Successful Recursion Levels

Lemma: If among the first £ recursion levels, at least logs, (n)
are successful for element x, we have K,,= 1. —

Proof: , -
N . f —_ e ;
K,-‘-h/ b(;“ < X; TL Q@a(suee, v P T 2
suec, LkalS [%3 w
Z 2 A ‘
keﬂs"‘(g) 5Vl<3> :V(‘-V;_)
—

Algorithm Theory, WS 2018/19 Fabian Kuhn

FRE:BURG

UNI

Chernoff Bounds

UNI
f

FREIBURG

* Let Xl, ..., X be independent 0-1 random variables and define
= P(X; = 1). =g bl X~ Blalae)

—_—

. Con5|der the random variable X = Z"
. Wehave,u—IE[| = Z?l[E[il = l 1 Pi

- Mg
Chernoff Bound (Low?s Tail): Y(¥=/7)< &
§<
V8> 0: P(X<(1—&p) < e-azﬂ/z

Chernoff Bound (Upper Tail):

ed #
VE>0: P(X>(1+6)u) < < e 9°H/3
o> 490 < (g g5vws) i)
L//_)
holds for 6 < 1

P —

Algorithm Theory, WS 2018/19 Fabian Kuhn 20

UNI

Chernoff Bounds, Example

FREIBURG

Assume that a fair coin is flipped n times. What is the probability
to have Ptz ms Elx)="%
1. lessthann/3 heads?

L K
92 2 3¢
Py =Tx<(1-$) < e 2?2 =¢
2. more than 0.51n tails? oot
2 Z
Mixs>(1+002)3)< e o

3. lessthan™/, —vVc - nlnntails? 4 4. 4
2(Culan N4\ , n“Z'_Z—__ L
F(x < (\ - =)7_)5 e = =

w-U-Q 4 ails Atlnds = L,
A I

Algorithm Theory, WS 2018/19 Fabian Kuhn 21

Proof of Chernoff Bound

UNI
f

FREIBURG

* Independent Bernoulli random variables X4, X,, ..., X,
* P(X;=1) 2 py, X = 2imq Xy p = 2j=q Pi = E[X]

Chernoff Lower Tail: P(X < (1 — 6)u) < 6‘52”/2_

Recall
* Markov Inequality: Given non-negative rand. var. Z > 0

vt > 0: P(Z >/ t) < @ 2~ c.EL2])<<L

* Independent random variables Y, Z:
E|Y - Z] = E[Y] : E[Z]

~——

Algorithm Theory, WS 2018/19 Fabian Kuhn 22

Proof of Chernoff Bound 522 s« = _

UNI
FREIBURG

s PX;=1)=p;, X = 2?=1Xi:ﬂ = ?=1Pi > E[X] .

- = , X=EX;
Chernoff Lower Tail: P(X < (1 — &)pu) < e % #/2 o .
T(x < (-3 = T =X = -6)p) P(2>1)< EL L

_(ﬁ;(-sX -.S(l S),q)

/ Q_—S("S)’" }lxp"%r Y,
s2X -S ‘[-s¥
L —SX] [[-s2 } EL] X. ‘ t[_é]

E

|=>

E[e) =0 fico-"= B=)) (-1 + |
<\ ‘\‘?; (Q_s-l)(o

Algorithm Theory, WS 2018/19 Fabian Kuhn 23

Proof of Chernoff Bound s=o

FRE:BURG

UNI

¢ IP(XL = 1) = pi,X =

2?=1Xir U = 7i1=1 p; = E[X]

Chernoff Lower Tail: IP(X s (1—0u) < e=5°n/2
+5((=58))

E[¢”)< e/'(e >

1?()(<(\ S)/h)<

Algorithm Theory, WS 2018/19

—

—s((-S)/n

o1 +5(1-9))
=€

Fabian Kuhn

A& 145-57)

24

Proof of Chernoff Bound

UNI
f

FREIBURG

s PX;=1)=p;, X = 2?=1Xir U= 7i1=1 p; = E[X]

Chernoff Lower Tai: P(X < (1 — &)u) < e 5°1/2

-$
-1 +5- §%) S g2
P x< (-5 < e ™€ | &atsesp

/”()"/g*%.z'/"”s—‘sz) (s<1) o <9

26 N < \-&i-E
S

/A("i)

=€

—

1<

Algorithm Theory, WS 2018/19 Fabian Kuhn 25

Number of Comparisons for x

UNI
f

FREIBURG

Lemma: For every array element x, with high probability, as a
non-pivot, x is compared to a pivot at most O (log n) times.

Proof:

Algorithm Theory, WS 2018/19

WIr

Fabian Kuhn

£
2

L= 8c Ram

’
~

26

