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Randomization

Randomized Algorithm:

* An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler
 Make the analysis simpler

— Sometimes it’s also the opposite...
* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
— True in some computational models (e.g., for distributed algorithms)
— Not clear in the standard sequential model

Algorithm Theory, WS 2018/19 Fabian Kuhn

UNI
f

FREIBURG



Randomized Quicksort

Quicksort:

Sy <v % S, > v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in §;

partition S into S, with elements < v,

—_—

and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;
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Randomized Quicksort Analysis
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Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:
e Let’s just count the number of comparisons

* In the partitioning step, all n — 1 non-pivot elements have to be
compared to the pivot

* Number of comparisons: / qandont

n—1 4+ #comparisons in recursive callsf

* If rank of pivotis r:
recursive calls withr — 1 and n — r elements

-\ n-C
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Law of Total Expectation
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e Given arandom variable X and J A

 asetofevents A4, ..., A; that partition ()
— E.g., for a second random variable Y, we could have

A ={w e Q:Y(w) =i}

Law of Total Expectation &

/
ZP(A) EX | A;] ZP(Y y) E[X|Y =]

Example: fEDQ . 3¢

* X:outcome of rolling a die
. AO = {X is even}, Ay = {X is odd}

Qﬂ/—\{
—57" E(X] = TR BXIAD < TA)-E XA
N e as
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Randomized Quicksort Analysis
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Random variables: ‘E[,C] ‘-“EL"" * Ce C"‘J

* C:total number of comparisons (for a given array of length n)
* R:rank of first pivot R&dl -5

* (p, C,: number of comparisons for the 2 recursive calls
4 (
E[C] =n —1+E[C,] + E[C]

Law of Total Expectatlon

=ZIP(R—7") IE[C|R—r]

E[C]

\

PR=r)-(n—1+ [E[CglR =r]| + E[C,|R =T1])

=i

r=1 Somu acm7 Qoekuk on aemb
o Wb«'\ v ok Longth =%
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Randomized Quicksort Analysis
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We have seen that: T(R=%)= %
n
E[C] :ZIP’(R =r)-(n—1+W+E[Cr|R =1])
Ty =1 (-1 Tn-™)

Define:
* T(n): expected number of comparisons when sorting n elements
E[C] =T(n)
E[C,IR=71]=T(r —1)
E[C/IR=r]=T(n—r)

Recursion:
n

T(n)=Z%-(n—1+T(r—1)+T(n—r))

r=1

T(0) = T(1) = 0
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksort is T_(’_I_’l) < 2nlinn.

Proof: (‘07:4“<J“*‘*W ") O —g
T(n)=Z%-(n—1+T(r—1)+T(n—r)), T(O)=E
r=1
= n=l + —:‘--:‘%(TGHT(\A—L-!)) /z-ﬁ
= V\—\+-n7-'~§’r(i) /
T4

b
n
)
3 V\-\+%jx¢dﬂd¥ sfﬂ“ | L P x
: ‘15‘\";6 o WZh-1 ©
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Randomized Quicksort Analysis
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
4_ n
T(n)Sn—1+£-fxlnxdx
1
TG Cuthy v (\ \
WEn-y + = — - = + -
— 191 2 1 ¢«

j — _lenx x>
xInx dx = — T

|
n

=n-l+Qubu - n +

‘-—‘2\1\@4\4 4((7(\‘0(2‘4/@4"‘ 0

"0 = E1C 1= 2uban
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Alternative Analysis
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Array to sort: 7,3,1,10,14,8,12,9_,_4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

7.
3( 1,4 5©2.__J \L""’/ g@g/lflg 'l

_—
C?, 4,22 (e (is, S 9,‘(] (w <R

A\ 7\ 7 "\
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Comparisons

 Comparisons are only between pivot and non-pivot elements

* Every element can only be the pivot once:
— every 2 elements can only be compared once!

W.l.0.g., assume that the elements to sortare 1,2, ..., n

Elements i and j are compared if and only if either L or j is a

pivot before any element h:i < h < j is chosen as pivot
-

— i.e., iff i is an ancestor of j or j is an ancestor of i

\ ¢ > “
[ N
1} ¢ ¢

| i\
5-(‘-\-\ e(ew.wc(-s

-

P(comparison betw. i and j) =j 11
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Counting Comparisons
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Random variable for every pair of elements (i, j):

1, if there is a comparison between i and j
Xij — .
0, otherwise

VA

ELyij = i+

j—i+\

2.
(]F()(;j’n = 3=+

Number of comparisons: X

=

i<j

* Whatis E[X]?
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Randomized Quicksort Analysis
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.
Proof:

* Linearity of expectation:
For all random variables X4, ..., X,, and all a4, ..., a,, € R,

n
E [z ain'
[

X=S X, EDO=(E[

t<)

Cli[E[Xi] .

=1

<)

- Z LX)
= )’T222 -

= <t
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Randomized Quicksort Analysis
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n-1 n 1 n-1n-i+1
BN=2), ), i 2 ), Lk
LX] L j—i+1 : k
l=1\]=l+1 ¥ =1 k=2
w=\ n |
\< —
‘\iﬂlr\uow‘c Seres! Z‘ 2 k

P W) —
T <+ Hw) -
o =2 (m—\)(Hm—l)

‘W

é@u\q

H(M)é\'\reum
< 2ulan

IJ
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Quicksort: High Probability Bound
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 We have seen that the number of comparisons of randomized
quicksort is O(nlogn) in expectation.

 (Can we also show that the number of comparisons is
O(nlogn) with high probability? |- =

n

 Recall:

On each recursion level, each pivot is compared once with
—_— . ‘e “« ”
each other element that is still in the same “part
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Counting Number of Comparisons

 We looked at 2 ways to count the number of comparisons
— recursive characterization of the expected number
— number of different pairs of values that are compared

Let’s consider yet another way:
 Each comparison is between a pivot and a non-pivot

* How many times is a specific array eIementix compared as a
non-pivot?

Value x is compared as a non-pivot to a pivot once in every
— ———

recursion level until one of the following two conditions apply:
#csm‘;. o{.)f aq uowf"foa
= &Q‘)ut 00(490\ X becowmas
?\ro'\r A(OIAL
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Successful Recursion Level Ki=»
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* Consider a specific recursion level £ [~ d
¢ v _
e
* Assume that at the beginning of recursion level £, element x is

in a sub-array of length K, that still needs to be sorted.

* |If x has been chosen as a pivot before level £, we set K, := 1

Definition: We say that recursion level £ is successful for element

X iff the following is true:

2
Kera =1 or Kppq s5-Ky

L x ) )
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Successful Recursion Level
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Lemma: For every recursion level £ and every array element x, it
holds that level £ is successful for x with probability at least 1/5,
independently of what happens in other recursion levels.

Proof: K,> | _
—\
L—% Keﬂ:‘

— oeE—— —i
L———\(—_—"C—V\_‘L’—{\d

e

K K K
‘/‘5 ¢/5 ¢/ 2

{ preot i 1 oo widdle pard

= bo«l\ &Mﬂ‘.u&u& am79 (\ﬁ‘\hez
SD'( &, ZS-Ke = (*(‘E.KQ

—® Gmb«(;‘\‘é‘() (—»r ts 2
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2
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Number of Successful Recursion Levels

Lemma: If among the first £ recursion levels, at least logs, (n)
are successful for element x, we have K,,= 1. —

Proof: , -
N . f —_ e ;
K,-‘-h/ b(;“ < X; TL Q@a(  suee, v P T 2
# suec, LkalS [%3 w
Z 2 A ‘
keﬂs"‘(g) 5Vl<3> :V(‘-V;_)
—
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Chernoff Bounds
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* Let Xl, ..., X be independent 0-1 random variables and define
= P(X; = 1). =g bl X~ Blalae)

—_—

. Con5|der the random variable X = Z"
. Wehave,u—IE[ | = Z?l[E[ il = l 1 Pi

- Mg
Chernoff Bound (Low?s Tail): Y(¥=/7)< &
§<
V8> 0: P(X<(1—&p) < e-azﬂ/z

Chernoff Bound (Upper Tail):

ed #
VE>0: P(X>(1+6)u) < < e 9°H/3
o> 490 < (g g5vws) i)
L//_)
holds for 6 < 1

P —
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Chernoff Bounds, Example
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Assume that a fair coin is flipped n times. What is the probability
to have Ptz ms Elx)="%
1. lessthann/3 heads?

L K
92 2 3¢
Py =Tx<(1-$) < e 2?2 =¢
2. more than 0.51n tails? oot
2 Z
Mixs>(1+002)3)< e o

3. lessthan™/, —vVc - nlnntails? 4 4. 4
2(Culan N4\ , n“Z'_Z—__ L
F(x < (\ - = )7_)5 e = =

w-U-Q 4 ails Atlnds = L,
A I
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Proof of Chernoff Bound
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* Independent Bernoulli random variables X4, X,, ..., X,
* P(X;=1) 2 py, X = 2imq Xy p = 2j=q Pi = E[X]

Chernoff Lower Tail: P(X < (1 — 6)u) < 6‘52”/2_

Recall
* Markov Inequality: Given non-negative rand. var. Z > 0

vt > 0: P(Z >/ t) < @ 2~ c.EL2])<<L

* Independent random variables Y, Z:
E|Y - Z] = E[Y] : E[Z]

~——
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Proof of Chernoff Bound 522 s« =  _
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s PX;=1)=p;, X = 2?=1Xi:ﬂ = ?=1Pi > E[X] .

- = , X=EX;
Chernoff Lower Tail: P(X < (1 — &)pu) < e % #/2 o .
T(x < (-3 = T =X = -6)p) P(2>1)< EL L

_(ﬁ;( -sX -.S(l S),q)

/ Q_—S("S)’" }lxp"%r Y,
s2X -S ‘[ -s¥
L —SX] [[ -s2 } EL] X. ‘ t[_é ]

E

|=>

E[e) =0 fico-"= B=)) (-1 + |
<\ ‘\‘?; (Q_s-l)(o
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Proof of Chernoff Bound s=o
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¢ IP(XL = 1) = pi,X =

2?=1Xir U = 7i1=1 p; = E[X]

Chernoff Lower Tail: IP(X s (1—0u) < e=5°n/2
+5((=58))

E[¢” )< e/'(e >

1?()(<(\ S)/h)<
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Proof of Chernoff Bound
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s PX;=1)=p;, X = 2?=1Xir U= 7i1=1 p; = E[X]

Chernoff Lower Tai: P(X < (1 — &)u) < e 5°1/2

-$
-1 +5- §%) S g2
P x< (-5 < e ™€ | &atsesp

/”()"/g*%.z'/"”s—‘sz) (s<1) o <9

26 N < \-&i-E
S

/A("i)

=€

—

1<
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Number of Comparisons for x
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Lemma: For every array element x, with high probability, as a
non-pivot, x is compared to a pivot at most O (log n) times.

Proof:
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