\\ \title{

Chapter 7

 \title{
Chapter 7

 Randomization}

亏픈

Algorithm Theory WS 2018/19

Fabian Kuhn

Randomization

Randomized Algorithm:

- An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to

- Make algorithms faster
- Make algorithms simpler
- Make the analysis simpler
- Sometimes it's also the opposite...
- Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
- True in some computational models (e.g., for distributed algorithms)
- Not clear in the standard sequential model

Randomized Quicksort

Quicksort:

function Quick (S : sequence): sequence;
\{returns the sorted sequence S \}
begin
if $\# S \leq 1$ then return S
else $\{$ choose pivot element v in S;
partition S into S_{ℓ} with elements $<v$,
and S_{r} with elements $>v$

return	Quick $\left(S_{\ell}\right)$	$v \operatorname{Quick}\left(S_{r}\right)$

end;

Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:

- Let's just count the number of comparisons
- In the partitioning step, all $n-1$ non-pivot elements have to be compared to the pivot
- Number of comparisons:

$$
n-1+\text { \#comparisons in recursive calls }
$$

- If rank of pivot is r :
recursive calls with $\underline{r-1}$ and $\underline{n-r}$ elements

Law of Total Expectation

- Given a random variable X and
- a set of events A_{1}, \ldots, A_{k} that partition Ω

- Egg., for a second random variable Y, we could have

$$
A_{i}:=\{\omega \in \Omega: \underline{Y(\omega)=i}\}
$$

Law of Total Expectation

$$
\underline{\underline{\mathbb{E}[X]}}=\sum_{i=1}^{k} \underline{\mathbb{P}\left(A_{i}\right) \cdot \mathbb{E}\left[X \mid A_{i}\right]}=\sum_{y} \mathbb{P}(Y=y) \cdot \mathbb{E}[X \mid Y=y]
$$

Example:

- X : outcome of rolling a die

$$
\mathbb{E}[x]=3,5
$$

- $\underline{A}_{0}=\left\{\underline{X \text { is even }\}, ~} \underline{A_{1}}=\{\underline{X \text { is odd }}\}\right.$

Algorithm Theory, WS 2018/19

$$
\left.\mathbb{E}[x]=\mathbb{P}\left(A_{0}\right) \cdot \mathbb{E} \times 1 A_{0}\right]+\mathbb{P}\left(A_{1}\right) \cdot \mathbb{E} \times\left(A_{0}\right]
$$

$$
112 \cdot 4+1 / 2 \cdot 3=3,5
$$

Randomized Quicksort Analysis

Random variables:

$$
\mathbb{E}[C]=\mathbb{E}\left[n-1+C_{e}+C_{r}\right]
$$

- C : total number of comparisons (for a given array of length n)
- R: rank of first pivot $R \in\{l, \ldots, n\}$
- C_{ℓ}, C_{r} : number of comparisons for the 2 recursive calls

$$
\underline{\underline{E}[C]}=\underline{n-1}+\underline{\vdots}\left[\underline{C_{\ell}}\right]+\underline{C_{[}} \underline{\left.\underline{C_{r}}\right]}
$$

Law of Total Expectation:

$$
\begin{aligned}
& \underline{\underline{\mathbb{E}[C]}} \stackrel{\emptyset}{=} \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot \underline{\underline{\mathbb{E}[C \mid R=r]}}
\end{aligned}
$$

Randomized Quicksort Analysis

We have seen that:

$$
\mathbb{P}(R=r)=\frac{1}{n}
$$

$$
\underbrace{\mathbb{E}[C]}_{T(n)}=\sum_{r=1}^{n} \mathbb{P}(R=r) \cdot(n-1+\underbrace{\mathbb{E}\left[C_{\ell} \mid R=r\right]}_{T(r-1)}+\underbrace{\mathbb{E}\left[C_{r} \mid R=r\right]}_{T(n-r)})
$$

Define:

- $\boldsymbol{T}(\boldsymbol{n})$: expected number of comparisons when sorting n elements

$$
\begin{aligned}
\mathbb{E}[C] & =T(n) \\
\mathbb{E}\left[C_{\ell} \mid R=r\right] & =T(r-1) \\
\mathbb{E}\left[C_{r} \mid R=r\right] & =T(n-r)
\end{aligned}
$$

Recursion:

$$
\begin{aligned}
& T(n)=\sum_{r=1}^{n} \frac{1}{n} \cdot(n-1+T(r-1)+T(n-r)) \\
& T(0)=T(1)=0
\end{aligned}
$$

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $\underline{T(n)} \leq \underline{2 n \ln n}$. Proof: (by induction on n)

$$
\begin{array}{rlrl}
T(n) & =\sum_{r=1}^{n} \frac{1}{n} \cdot(n-1+T(r-1)+T(n-r)), & & T(1)=0 \\
& =n-1+\frac{1}{n} \cdot \sum_{i=0}^{n-1}(T(i)+T(n-i-1)) & \\
& =n-1+\frac{2}{n} \cdot \sum_{i=1}^{n-1} T(i) \\
& \leqslant n-1+\frac{4}{n} \cdot \sum_{i=1}^{n-1} i \cdot \underline{l n}(i) \\
& \leqslant n-1+\frac{4}{n} \int_{1}^{n} x \ln (1) d x
\end{array}
$$

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \leq 2 n \ln n$. Proof:

$$
\begin{gathered}
T(n) \leq n-1+\frac{4}{n} \cdot \int_{1}^{n} x \ln x d x \\
\underline{\underline{T(n)}} \leqslant \\
=n-1+\frac{4}{n}\left[\frac{n^{2} \ln n}{2}-\frac{n^{2}}{4}+\frac{1}{4}\right] \quad \int x \ln x d x=\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4} \\
=2 n \ln n+2 n \ln n-n+\frac{1}{n}+\underbrace{\left(\frac{1}{n}-1\right)}_{<0}<2 n \ln n \\
\\
\end{gathered}
$$

Alternative Analysis
Array to sort:
(7) $3,1,10,14,8,12, \underline{9}, 4,6,5,15,2,13,11]$

Viewing quicksort run as a tree:

Comparisons

- Comparisons are only between pivot and non-pivot elements
- Every element can only be the pivot once:
\rightarrow every 2 elements can only be compared once!
- W.l.o.g., assume that the elements to sort are $1,2, \ldots, n$
- Elements \underline{i} and \underline{j} are compared if and only if either \underline{i} or \underline{j} is a pivot before any element $h: i<h<j$ is chosen as pivot
- i.e., iff i is an ancestor of j or j is an ancestor of i

$$
\underset{\text { Fs } 2018 / 19}{\mathbb{P}(\text { comparison betw. } i \text { and } j)=\frac{2}{j-i+1}}
$$

Counting Comparisons

Random variable for every pair of elements (i, j):

$$
\begin{aligned}
& X_{i j}= \begin{cases}1, & \text { if there is a comparison between } i \text { and } j \\
0, & \text { otherwise }\end{cases} \\
& \mathbb{P}\left(X_{i j}=1\right)=\frac{2}{j-i+1} \quad \mathbb{E}\left[X_{i j}\right]=\frac{2}{j-i+1}
\end{aligned}
$$

Number of comparisons: $\underline{\underline{X}}$

$$
X=\sum_{i<j} X_{i j}
$$

- What is $\mathbb{E}[X]$?

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \leq 2 n \ln n$.

Proof:

- Linearity of expectation:

For all random variables X_{1}, \ldots, X_{n} and all $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i}^{n} a_{i} X_{i}\right] & =\sum_{i}^{n} a_{i} \mathbb{E}\left[X_{i}\right] . \\
X=\sum_{i<i} X_{i j} \quad \mathbb{E}[X] & =\mathbb{E}\left[\sum_{i=j} X_{i j}\right] \\
& =\sum_{i<j} \mathbb{E}\left[X_{i j}\right] \\
& =\sum_{i<j} \frac{2}{j-i+1}=\sum_{i=1}^{n-1} \sum_{i=i+1}^{n} \frac{2}{j-i+1}
\end{aligned}
$$

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \leq 2 n \ln n$. Proof:

$$
\mathbb{E}[X]=2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}=2 \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k}
$$

Harmonic series:

$$
H(n):=\sum_{i=1}^{n} \frac{1}{i}
$$

$H(n) \leq 1+\ln n$

$$
\begin{aligned}
& \leqslant 2 \sum_{i=1}^{n-1} \sum_{\sum_{k=2}^{n} \frac{1}{k}}^{H(n)-1} \\
& =2(n-1) \underbrace{H(n)-1)}_{\leqslant \ln n}
\end{aligned}
$$

$$
<2 n \ln n
$$

Quicksort: High Probability Bound

- We have seen that the number of comparisons of randomized quicksort is $O(n \log n)$ in expectation.
- Can we also show that the number of comparisons is $O(n \log n)$ with high probability? $\quad 1-\frac{1}{n^{c}}$
- Recall:

On each recursion level, each pivot is compared once with each other element that is still in the same "part"

Counting Number of Comparisons

- We looked at 2 ways to count the number of comparisons
- recursive characterization of the expected number
- number of different pairs of values that are compared

Let's consider yet another way:

- Each comparison is between a pivot and a non-pivot
- How many times is a specific array element x compared as a non-pivot?

Value x is compared as a non-pivot to a pivot once in every recursion level until one of the following two conditions apply:

1. x is chosen as a pivot
2. x is alone
$=$ depth when x becomes pirot/alone

Successful Recursion Level $\quad k_{1}=n$

- Consider a specific recursion level ℓ

- Assume that at the beginning of recursion level ℓ, element x is in a sub-array of length K_{ℓ} that still needs to be sorted.
- If x has been chosen as a pivot before level ℓ, we set $K_{\ell}:=1$

Definition: We say that recursion level ℓ is successful for element \underline{x} iff the following is true:

$$
\underline{\underline{K_{\ell+1}}=1} \quad \text { or } \quad \underline{K_{\ell+1} \leq \frac{2}{3} \cdot K_{\ell}}
$$

Successful Recursion Level
Lemma: For every recursion level $\underline{\ell}$ and every array element x, it holds that level ℓ is successful for x with probability at least $1 / 3$, independently of what happens in other recursion levels.

Proof: $K_{e}>1$

if prot is in the middle part
\Rightarrow both remaining arrays have

$$
\begin{aligned}
& \Rightarrow \text { sire } \leq \frac{2}{3} K_{e} \Rightarrow K_{l+1} \leq \frac{2}{3} \cdot k_{e} \\
& \Rightarrow \text { probability for this } \geq \frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& K_{e}=1 \\
& \longrightarrow K_{e+1}=1
\end{aligned}
$$

Number of Successful Recursion Levels
Lemma: If among the first ℓ recursion levels, at least $\log _{3 / 2}(n)$ are successful for element x, we have $K_{\ell_{4}}=1$.

Proof:

$$
\begin{aligned}
& k_{1}=n, k_{i+1} \leq k_{i} \text { if level i sic. : } k_{i+1} \leq \frac{2}{3} \cdot k_{i} \\
& k_{l+1} \leq n\left(\frac{2}{3}\right)^{\# \text { suck. levels }} \leq n\left(\frac{2}{3}\right)^{\log _{3 / 2} n}=n \cdot \frac{1}{n}=1
\end{aligned}
$$

Chernoff Bounds

- Let $\underline{X}_{1}, \ldots, \underline{X_{n}}$ be independent $\underline{\underline{0-1}}$ random variables and define $\underline{p}_{i}:=\mathbb{P}\left(X_{i}=1\right) . \quad$ it $p_{i}=p$ for all $i \quad X \sim \operatorname{Bin}(n, p)$
- Consider the random variable $\underline{X}=\underline{\sum_{i=1}^{n} X_{i}}$
- We have $\left.\underline{\mu}:=\underline{\mathbb{E}[X]}=\underline{\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right.}\right]=\underline{\underline{\sum_{i=1}^{n} p_{i}}}$

Chernoff Bound (Lower Tail):

$$
\mathbb{P}(X<\mu / 2)<e^{-\mu / 8}
$$

$$
\forall \underline{\delta}>0: \mathbb{P}(X<(1-\delta) \mu)<\boldsymbol{e}^{-\delta^{2} \mu / 2}
$$

Chernoff Bound (Upper Tail):

$$
\forall \delta>0: \mathbb{P}(X>\underline{\underline{(1+\delta)}} \mu)<\underbrace{\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}<\uparrow \underbrace{e^{-\delta^{2} \mu / 3}})}_{\text {holds for } \delta \leq 1}
$$

Chernoff Bounds, Example
Assume that a fair coin is flipped n times. What is the probability to have

$$
p_{i}=\frac{1}{2} \quad \mu=\mathbb{E}[x]=u / 2
$$

1. less than $n / 3$ heads?

$$
\mathbb{P}(x<n / 3)=\mathbb{P}\left(x<\left(1-\frac{1}{3}\right) \cdot \frac{n}{2}\right)<e^{-\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{n}{2}}=e^{-n / 36}
$$

2. more than $0.51 n$ tails?

$$
\begin{aligned}
& \text { ore than } 0.51 n \text { tails? } \\
& \mathbb{P}\left(x>(1+0.02) \cdot \frac{n}{2}\right)<e^{-\frac{0.02^{2}}{3} \cdot \frac{n}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. less than } n / 2-\sqrt{c \cdot n \ln n} \text { tails? } \\
& \mathbb{P}\left(X<\left(1-\frac{2 \sqrt{c n \ln n}}{n}\right) \frac{n c \cdot n \cdot \ln n \cdot \frac{n}{2}}{2}\right) \leq e^{-\frac{n^{2} \cdot 2}{2}}=e^{-\ln n}=\frac{1}{n^{c}} \\
& \text { w.h.p. \# tails/\#heads }=\frac{n}{2} \pm O(\sqrt{n \log n})
\end{aligned}
$$

Proof of Chernoff Bound

- Independent Bernoulli random variables $X_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$
- $\mathbb{P}\left(X_{i}=1\right) \geq p_{i}, X:=\sum_{i=1}^{n} X_{i}, \mu:=\sum_{i=1}^{n} p_{i} \geq \mathbb{E}[X]$

Chernoff Lower Tail: $\mathbb{P}(X<(1-\delta) \mu)<e^{-\delta^{2} \mu / 2}$
Recall

- Markov Inequality: Given non-negative rand. var. $\underline{Z} \geq 0$

$$
\forall t>0: \underline{\mathbb{P}(Z>t)}<\frac{\mathbb{E}[Z]}{t} \quad \mathbb{P}(Z>c \cdot \mathbb{E}[Z])<\frac{1}{c}
$$

- Independent random variables Y, Z :

$$
\mathbb{E}[Y \cdot Z]=\mathbb{E}[Y] \cdot \mathbb{E}[Z]
$$

Proof of Chernoff Bound $s>0$

$$
\begin{aligned}
a & >b \\
e^{s a} & >e^{5 b}
\end{aligned}
$$

- $\mathbb{P}\left(X_{i}=1\right) \geq p_{i}, X:=\sum_{i=1}^{n} X_{i}, \mu:=\sum_{i=1}^{n} p_{i} \geq \mathbb{E}[X]$

Chernoff Lower Tail: $\mathbb{P}(X<(1-\delta) \mu)<\boldsymbol{e}^{-\delta^{2} \mu / 2}$

$$
\begin{aligned}
\mathbb{P}\left(X<(1-\delta)_{\mu}\right) & =\mathbb{P}\left(-x>-(1-\delta)_{\mu}\right) & \mathbb{P}(Z>t)<\frac{\mathbb{E}[Z]}{t} \\
& =\mathbb{P}(\underbrace{e^{-s X}}_{Z}>e^{-s(1-\delta)_{\mu}}) &
\end{aligned}
$$

insp of x_{1}

$$
\begin{aligned}
& \mathbb{E}\left[e^{-s X}\right]=\mathbb{E}\left[e^{-s \Sigma x_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{-s X_{i}}\right] \stackrel{\downarrow}{=} \prod_{i=1}^{n} \mathbb{E}\left[e^{-s x_{i}}\right] \\
& \mathbb{E}\left[e^{-s X_{i}}\right]=\mathbb{P}\left(X_{i}=1\right) \cdot e^{-s+1}+\mathbb{P}\left(x_{i}=0\right) \cdot e^{-s \cdot 0}=\mathbb{P}\left(x_{i}=1\right) \underbrace{\left(e^{-s}-1\right)}_{-\infty}+1
\end{aligned}
$$

- $\mathbb{P}\left(X_{i}=1\right) \geq p_{i}, X:=\sum_{i=1}^{n} X_{i}, \mu:=\sum_{i=1}^{n} p_{i} \geq \mathbb{E}[X]$

Chernoff Lower Tail: $\mathbb{P}\left(X X_{-s \bar{x}}(1-\delta) \mu\right)<e^{-\delta^{2} \mu / 2}$

$$
\begin{aligned}
& \mathbb{P}(x<(1-\delta) \mu)<\frac{\mathbb{E}\left[e^{-s x}\right]}{e^{-s(1-s / \mu}} \leq e^{\mu\left(e^{-s}-1+s(1-\delta)\right)} \\
& \begin{aligned}
\mathbb{E}\left[e^{-s x}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{-s x_{i}}\right] & \leq \prod_{i=1}^{n}\left(1+p_{i}\left(e^{-s}-1\right)\right) \\
& \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{-s}-1\right)} \\
& =e^{\sum_{i=1}^{n} p_{i}\left(e^{-s-1)}\right.}=e^{\mu\left(e^{-s}-1\right)}
\end{aligned}
\end{aligned}
$$

set $s=\delta$

$$
\begin{aligned}
& \text { set } s=\delta \\
& \mathbb{P}\left(X<(1-\delta)_{\mu}\right)<e^{\mu\left(e^{-\delta}-1+\delta(1-\delta)\right)}=e^{\mu\left(e^{-\delta}-1+\delta-\delta^{2}\right)}
\end{aligned}
$$

Proof of Chernoff Bound

- $\mathbb{P}\left(X_{i}=1\right) \geq p_{i}, X:=\sum_{i=1}^{n} X_{i}, \mu:=\sum_{i=1}^{n} p_{i} \geq \mathbb{E}[X]$

Chernoff Lower Tail: $\mathbb{P}(X<(1-\delta) \mu)<e^{-\delta^{2} \mu / 2}$

$$
\begin{aligned}
\mathbb{P}(x< & (1-\delta) \mu)<e^{\mu\left(e^{-\delta}-1+\delta-\delta^{2}\right)} \\
& =e^{\mu\left(x-\delta+\frac{\delta^{2}}{2}-1+\delta-\delta^{2}\right)} \\
& =e^{\mu\left(-\frac{\delta^{2}}{2}\right)}
\end{aligned}
$$

$$
e^{-\delta}=1-\delta+\frac{\delta^{2}}{2} L^{-} \ldots
$$

$$
\stackrel{(\delta \leq 17}{\leq} 1-\delta+\frac{s^{2}}{2}
$$

卫

Number of Comparisons for x

Lemma: For every array element x, with high probability, as a non-pivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

$$
\begin{aligned}
& \frac{k}{3} \frac{e^{-\frac{k}{6}}}{\frac{1}{6}}=\frac{1}{n^{c}} \\
& k=8<\ln n \quad \frac{1}{n^{c-1}}
\end{aligned}
$$

