Chapter 7
Randomization

Algorithm Theory
WS 2018/19

Fabian Kuhn

UNI
I

FREIBURG



UNI

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:
* always a correct solution
* running time is a random variable

 Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:
e probabilistic correctness guarantee (mostly correct)

* fixed (deterministic) running time

 Example: primality test

Algorithm Theory, WS 2018/19 Fabian Kuhn 2



Minimum Cut

UNI
f

FREIBURG

Reminder: Given a graph ¢ = (V,E), a cut is a partition (4, B)
of VsuchthatV = AUB,ANB=Q,A,B+0

Size of the cut (A, B): # of edges crossing the cut

* For weighted graphs, total edge weight crossing the cut
b/p/% (oavu(A\r:)l‘a,

Goal: Find a cut of minimal size (i.e., of size 1(G))

Maximum-flow based algorithm:
* Fix s, compute min s-t-cut forall.t # s

« 0(m-A(G )) = 0(mn) per s-t cut
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Best-known deterministic algorithm: O (mn + n? logn)= Q(\/\S)

Algorithm Theory, WS 2018/19 Fabian Kuhn 3



UNI
FREIBURG

Edge Contractions

* In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

N\
ok not ok

to
Contracting edge {u, v}: P\ . .
* Replace nodesu, vby newnodew os—4——<¢< a s ©

Qa n
* Forall edges {u, x} and {v, x}, add an edge {w, x}

 Remove self-loops created at node w

contract {u, v}

Algorithm Theory, WS 2018/19 Fabian Kuhn 4



Properties of Edge Contractions

UNI
f

FREIBURG

Nodes:
* After contracting {u, v}, the new node represents u and v

» After a series of contractions, each node_represents a subset of
the original nodes

(1,2) (1,2)
5, (4,6)} 5 {3,(4,5,6)}
ﬁ d
(3,4,5,6)
_——

Cuts:

* Assume in the contracted graph, w represents nodes S,, C V

* The edges of a node w in a contracted graph are in a one-to-one

correspondence with the edges crossing the cut (S,,,V \ S,,)
4

Algorithm Theory, WS 2018/19 Fabian Kuhn 5




Randomized Contraction Algorithm

UNI
FREIBURG

/Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

e

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0(n?).
* We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).
* There are n — 2 contractions, each can be done in time O(n).

* We will see this later.
Algorithm Theory, WS 2018/19 Fabian Kuhn 6



Contractions and Cuts

UNI
f

FREIBURG

Lemma: If two original nodes u, v € IV are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted

b <
ul‘_: -——0-1«-«——-;(—%__.\’ \
Proof:

* Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

* The claim the follows by induction on the number of edge
contractions. A

Algorithm Theory, WS 2018/19 Fabian Kuhn 7



Contractions and Cuts

UNI
f

FREIBURG

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S_u_be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph

— (4',B") with
A’ :=USu, B’ :=U5v
_ uEA— - VEB
isacutofG. -

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).

Algorithm Theory, WS 2018/19 Fabian Kuhn 8



Contraction and Cuts

UNI
f

FREIBURG

Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € A4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. If noedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)

Algorithm Theory, WS 2018/19 Fabian Kuhn 9



i i cifre
Getting The Min Cut NG

UNI
f

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/f(n — 1). = 4

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k

G has at least kn/2 edges. @
ee
Proof:

* Min cut has size k = all nodes have degree = k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

lmL

 Numberof edgesm =1/,-> deg(v) >

Algorithm Theory, WS 2018/19 Fabian Kuhn 10



UNI

Getting The Min Cut  V---/-%

FREIBURG

Theorem: The probability that the algorithm ogtputs a minimum

cutis at least 2/n(n — 1). %
Proof: @ @

* Consider a fixed min cut (4, B), assume (4, B) has size k

* The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

* Before contraction, there aren + 1 — i nodes
2 andthus= (n + 1 — i)k /2 edges

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

% 2

m+1-k n+1-—i
2

Algorithm Theory, WS 2018/19 Fabian Kuhn 11



Getting The Min Cut

UNI
f

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

*\ If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

* Event &;: edge contracted in step i is not crossing (4, B)

God: Bl ke AO)=T(E,0€,0. 0 Eue)
) RENEI TS, 10t - RE IS5,

—_—

V(gt € a.n Q(‘_); | - wi_; :_-::"

—

—————

Algorithm Theory, WS 2018/19 Fabian Kuhn 12



UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

n—i—2

¢ P(El& N NE)=1-2/, =22
* No edge crossing (4, B) contracted: event € = ﬂ?;lz E;
VE 0.06ur)=TE) TELNE) TLI€0E) - RELNEa- AELy)

S n-2 »-3 n-4 u-5 n-6 _ _‘f 2 .
“a wa w2 w3y wg o5 [ 3
2 )

nn-") - (;) D

Algorithm Theory, WS 2018/19 Fabian Kuhn 13



Randomized Min Cut Algorithm

UNI
FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.
(+w¢=éf

Proof: l-x <& v

- _ : n : :
* Probability to not get a minimum cut in ¢ - ( 2 ) - Inn iterations:

B 1
1—(T <—€—G-l-n-n=F
277

( e(P)nn

orollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

e It remains to show that each instance can be implemented in
0(n?) time.

Algorithm Theory, WS 2018/19 Fabian Kuhn 14



Implementing Edge Contractions

Edge Contraction:
* Given: multigraph with n nodes

— assume that set of nodes is {1, ..., n}
e Goal: contract edge {u, v}
Data Structure
* We can use either adjacency lists or an adjacency matrix
* Entryinrow i and column j: #edges between nodes i and j

3 ;

 Example:

2
Ay

——

S

|

o
O R~ ol
_ OO R O
WO R -

_

Algorithm Theory, WS 2018/19 Fabian Kuhn

|
FRE:BURG

UNI



Contracting An Edge

UNI

FREIBURG

Example: Contract one of the edges between 3 and 5

Algorithm Theory, WS 2018/19

1 2 3 4 5 6 7
1/o0l1|0|3|0|0]|O
2(1|0l1]0]|1|2]0
3/0(110]0]|2|2]0
413|0]0|0|1]0]|0
510(1(2]1|0]1]1
610[2|2]0|1]0]1
710{0l0]0|1|1]0O
{32}02@1%3(

Fabian Kuhn

16



Contracting An Edge

UNI
f

FREIBURG

Example: Contract one of the edges betwefn 3and5

Algorithm Theory, WS 2018/19

13,5}

Fabian Kuhn

1 2 3 4 5 6 7
O(1,0|3[]0(0]0
17010120
01002210
310/{0(0(1]0]6O0
O(1(2(1]0]1]1
0220|101
Oo(0|]0|0O0]1]|11|0

—— —

|

’ w

17



Contracting An Edge

UNI
f

FREIBURG

Example: Contract one of the edges between 3 and 5

Algorithm Theory, WS 2018/19

1 2 35 4 6 V7
110(1]0]3 0|0
211|020 2|0
35102 (0|1 311
413(011]|0 0|0
4
6101230 011
7/10/0]1]0 1|0
{3510 1

Fabian Kuhn

18



Contracting an Edge

UNI
f

FREIBURG

Claim: Given the adjacency matrix of an n-node multigraph and
an edge {u, v}, one can contract the edge {u, v} in time O (n).

* Row/column of combined node {u, v} is sum of rows/columns
of uand v

* Row/column of u can be replaced by new row/column of
combined node {u, v}

e Swap row/column of v with last row/column in order to have
the new (n — 1)-node multigraph as a contiguous
(n—1) X (n — 1) submatrix

Algorithm Theory, WS 2018/19 Fabian Kuhn 19



Finding a Random Edge

UNI

FREIBURG

* We need to contract a uniformly random edge

* How to find a uniformly random edge in a multigraph?

— Finding a random non-zero entry (with the right probability) in an
adjacency matrix costs 0(n?).

. o . 12N ‘\(du
Idea for more efficient algorithm: 4 4 |
 First choose a random node u Zan | 2ots

— with probability proportional to the degree (#edges) of u

* Pickarandom edge of u
— only need to look at one row = time 0(n)

S

Tlolzlelo (Blyz g ] é-‘-‘- L
T11¢ 1’°\\
2 3 4 = -

L LI L Lé L-\0

Algorithm Theory, WS 2018/19 Fabian Kuhn

20



Choose a Random Node

UNI

FREIBURG

Edge Sampling:
1. Choose a node u € V with probability
deg(u) B deg(u) ——0@) ey
ZUEV deg(v) ~ 2m
2. Choose a uniformly random edge of u =— 9 Rece

-

N

\— e
II\A
d(w) | dwv) | __L
Cote = 757 do * 2 o T

—————

Algorithm Theory, WS 2018/19 Fabian Kuhn

21



Choose a Random Node

UNI
f

FREIBURG

deg(u)
2m

* We need to choose a random node u with probability

* Keep track of the number of edges m and maintain an array with
the degrees of all the nodes

— Can be done with essentially no extra cost when doing edge contractions

Choose a random node:
degsum = 0;
for all nodes ue€elvlV:

deg(u)
2m—degsum

with probability

pick node u; terminate

else
degsum += deg(u)

Algorithm Theory, WS 2018/19 Fabian Kuhn 22



Randomized Min Cut Algorithm

UNI
f

FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* One instance consists of n — 2 edge contractions

* Each edge contraction can be carried out in time 0 (n)
— Actually: O(current #nodes)

 Time per instance of the contraction algorithm: 0(n?)

Algorithm Theory, WS 2018/19 Fabian Kuhn 23



Can We Do Better?

UNI

« Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0(n?).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known
deterministic algorithm.

1. It allows to obtain strong statements about the distribution
of cuts in graphs.

Algorithm Theory, WS 2018/19 Fabian Kuhn 24

FREIBURG



Better Randomized Algorithm

Recall:

Consider a fixed min cut (4, B), assume (4, B) has size k

The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

Throughout the algorithm, the edge connectivity is at least k
and therefore each node has degree > k

Before contraction i, there aren + 1 — i nodes and thus at
least(n + 1 — i)k /2 edges

If no edge crossing (A4, B) is contracted before, the probability
to contract an edge crossing (A, B) in step i is at most

k 2
n+1-Dk n+1-1i"
2 L

Algorithm Theory, WS 2018/19 Fabian Kuhn 25

UNI
f

FREIBURG



UNI

Improving the Contraction Algorithm

FREIBURG

* For a specific min cut (4, B), if (4, B) survives the first i
contractions,

P(edge crossing (4, B) in contractioni + 1) < ma—

* Observation: The probability only gets large for large i

* ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones. .

o
=

h

_

Algorithm Theory, WS 2018/19 Fabian Kuhn 26




Safe Contraction Phase

UNI
f

FREIBURG

Lemma: A given min cut (4, B) of an n-node graph G survives the
firstn — ["/\/E + 1} contractions, with probability > 1/,,.

Proof:
* Event &;: cut (4, B) survives contraction i
. Probablllty that (4, B) survives the first n — t contractions:

> k=2 w-3 un-9 L e €(¢-1)
T TR wer w2z T Gy sl gel 4 we=l)
\“—’L
t ‘.V\/ {2 2+ 7(*%“)& e
—_ + - - . —3
(i ﬁ - \/l("(m__‘) E rz-: 2

Algorithm Theory, WS 2018/19 Fabian Kuhn 27



Better Randomized Algorithm

UNI

Let’s simplify a bit:

* Pretend that n/\/i is an integer (for all n we will need it).

* Assume that a given min cut survives the first n — /\/—
contractions with probability > 1/,.

—

rawolo

contract(G, t):
* Starting with n-node graph G, perform n — t edge contractiops

such that the new graph has t nodes. Ve
— n
- ““a [/
1 . D"“{(n ‘acu\— - ‘<
mincut(G): y, 7"\ w / " .,
R v i S S
1. X; := mincut (Contract(G n/v2 )) N
iR

2. X, := mincut (contract(G,n/\/i));

. 3. return min{X,X,};

Algorithm Theory, WS 2018/19 Fabian Kuhn 28

FREIBURG



Success Probability

¥
N
N -
|

UNI

FREIBURG

. P T
mincut(G): r
S N A— )

1. X1 = mincut (Contract G, n/\/_

—_—

2))
2. Xz := mincut (contract(G n/\/—))

3. return min{X;, X, };

P(n): probability that the above algorithm returns a min cut when
applied to a graph with n nodes.

* Probability that X; is a min cut = "i '?(w/€>

Recursion:
Pz | - (l —-*(\)( @)) (P( fz"iz ) =)

Algorithm Theory, WS 2018/19 Fabian Kuhn 29




2 - =

Success Probability Y—% woeloure =

|
FRE:BURG

UNI

Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

—_— \

Proof (by induction on n): oo 2 ﬁ v
1

2
P(n)éP<%>—Z-P<%) , P(2) =1

%ase ase: n=2 ?(M)Z»@s, =) v — Uhna =1 2 245 4
ke Ply x P(F) - —’i’(
(w72) )y | \ | <
— _ o — [l = :
> hee Tihee Ata L A

| | >_ | (%-3
ZEQ Ue2) A=t \Mlopn -2

‘(/00\ -3 Lllﬂ“ -3 l

= _ — ! "
Algorithm Theory, WS 2018/19 Fabian Kuhn 195 “ LLI.::—‘—} Yl&fu - 1%“ i—




UNI

Running Time

FREIBURG

asz

1. X; == mincut (Contract(G, n/\/i)); b=(2

2. X, = mincut (co\ntract(G,n/\/?)); C= ﬁ@ba

3. return min{X;, X5 }; Hasler Then L5 W)= O(u"Aeyu)
Recursion: Ty =aT(E) +O(°)

e T(n):time to apply algorithm to n-node graphs
* Recursive calls: 2T ("/\/5)

* Number of contractions to get to "‘/\/E nodes: O(n)

_ [ _
LT(n) = 2T ( ﬁ) +0(?),  T(2)=0(1)
TwW= O(Vlzl(@’& n)

Algorithm Theory, WS 2018/19 Fabian Kuhn 31




Running Time

UNI

Theorem: The running time of the recursive, randomized min cut
algorithm is O (n?logn).

X .
Proof: figw 7 ¢l
* Can be shown in the usual way, by induction on n !
X 'X/’a"

l
- — )<
Remark: ( | Za,u) <
* The running time is only by an O (log n)-factor slower than

the basic contraction algorithm.

* The success probability is exponentially better!
l‘ wd wm{- a Wmiu. cul w.(\-p. (ws# ‘M’é- (- ;‘Z) p MM.QM q,&é‘zu) NG?.

o e 5 | ol b

bk T
X wn + m’ba-n)

Algorithm Theory, WS 2018/19 Fabian Kuhn 32

FREIBURG



