

Chapter 7 Randomization

Algorithm Theory WS 2018/19

Fabian Kuhn

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- **Example:** primality test

Minimum Cut

Reminder: Given a graph G = (V, E), a cut is a partition (A, B) of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (A, B): # of edges crossing the cut

 For weighted graphs, total edge weight crossing the cut redge convectority

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Maximum-flow based algorithm:

- Fix s, compute min <u>s-t-</u>cut for all $t \neq s$
- $O(m \cdot \lambda(G)) = O(mn)$ per *s*-*t* cut
- Gives an $O(mn\lambda(G)) = O(mn^2)$ -algorithm

Best-known deterministic algorithm: $O(mn + n^2 \log n) = O(n^2)$

N

Edge Contractions

• In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge $\{u, v\}$:

- Replace nodes <u>u</u>, <u>v</u> by new node <u>w</u>
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Algorithm Theory, WS 2018/19

Fabian Kuhn

Properties of Edge Contractions

FREBURG

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes

Cuts:

- Assume in the contracted graph, \underline{w} represents nodes $S_w \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $(S_w, V \setminus S_w)$

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do

contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1/O(n^2)$.

• We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O(n^2)$.

- There are n 2 contractions, each can be done in time O(n).
- We will see this later.

Algorithm Theory, WS 2018/19

Contractions and Cuts

FREIBURG

Lemma: If two original nodes $u, v \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

Proof:

- Contracting an edge {x, y} merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph *G* as follows:
 - For a node u of the contracted graph, let S_u be the set of original nodes that have been merged into u (the nodes that u represents)
 - Consider a cut (A, B) of the contracted graph
 - -(A',B') with

$$\underline{A'} \coloneqq \bigcup_{u \in A} S_u, \qquad \underline{B'} \coloneqq \bigcup_{v \in B} S_v$$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut (A', B').

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

- 1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).
- 2. If no edge of (A, B) is contracted, no two nodes $u \in A, v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/(n(n-1)). = $\frac{1}{2}$

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

Proof:

- Min cut has size $k \Longrightarrow$ all nodes have degree $\ge k$
 - A node v of degree < k gives a cut ({v}, $V \setminus \{v\}$) of size < k
- Number of edges $m = \frac{1}{2} \cdot \sum_{v} \deg(v) \ge \frac{w}{2}$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1). **Proof:**

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Before contraction \underline{i} , there are $\underline{n+1-i}$ nodes \rightarrow and thus $\geq (\underline{n+1-i})k/2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step *i* is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{n+1-i}.$$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

Proof:

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step *i* is at most 2/n+1-i.
- Event $\underline{\mathcal{E}_i}$: edge contracted in step *i* is **not** crossing (A, B)Goal: $\mathbb{P}(alg. returns (A, b)) = \mathbb{P}(\underline{\mathcal{E}_i} \cap \underline{\mathcal{E}_2} \cap \dots \cap \underline{\mathcal{E}_{n-2}})$ $= \mathbb{P}(\underline{\mathcal{E}_i}) \cdot \mathbb{P}(\underline{\mathcal{E}_2}(\underline{\mathcal{E}_i})) \cdot \mathbb{P}(\underline{\mathcal{E}_3}(\underline{\mathcal{E}_i} \cap \underline{\mathcal{E}_2})) \dots \cdot \mathbb{P}(\underline{\mathcal{E}_{n-2}}(\underline{\mathcal{E}_n} \cap \underline{\mathcal{E}_{n-2}}))$

$$\mathbb{P}(\mathcal{E}_{i} | \mathcal{E}_{i}, n \dots n \mathcal{E}_{i-i}) \ge 1 - \frac{2}{n+1-i} = \frac{n-i-1}{n-i+1}$$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

Proof:

•
$$\mathbb{P}(\mathcal{E}_{i+1}|\mathcal{E}_1 \cap \dots \cap \mathcal{E}_i) \ge 1 - \frac{2}{n-i} = \frac{n-i-2}{n-i}$$

• No edge crossing $(\underline{A},\underline{B})$ contracted: event $\mathcal{E} = \bigcap_{i=1}^{n-2} \mathcal{E}_i$

$$\begin{split} & \Re(\xi_{1}, \dots, \xi_{n-2}) = \Re(\xi_{1}) \cdot \Re(\xi_{2} | \xi_{1}) \cdot \Re(\xi_{3} | \xi_{1}, \dots \xi_{2}) \cdot \dots \cdot \Re(\xi_{n-2} | \xi_{n}, \dots h | \xi_{n-2}) \\ & = \frac{n-2}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-3} \cdot \frac{n-6}{n-4} \cdot \dots \cdot \frac{q}{6} \cdot \frac{3}{5} \cdot \frac{2}{7} \cdot \frac{1}{3} \\ & = \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}} \cdot \dots \cdot \frac{q}{\binom{n}{2}} \cdot \frac{1}{n} \end{split}$$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p. $1-x < e^{-x}$ $(+x < e^{x})$

Proof:

Probability to not get a minimum cut in $c \cdot \binom{n}{2} \cdot \ln n$ iterations:

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{c \cdot \binom{n}{2} \cdot \ln n} < e^{-c \cdot \ln n} = \frac{1}{n^c}$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

It remains to show that each instance can be implemented in $O(n^2)$ time.

Implementing Edge Contractions

Edge Contraction:

- Given: multigraph with *n* nodes
 - assume that set of nodes is $\{1, ..., n\}$
- Goal: contract edge $\{u, v\}$

Data Structure

- We can use either adjacency lists or an adjacency matrix
- Entry in row *i* and column *j*: #edges between nodes *i* and *j*
- Example:

Contracting An Edge

Example: Contract one of the edges between 3 and 5

[3,5] 0 2 4 1 3 1

Contracting An Edge

Fabian Kuhn

Contracting An Edge

Contracting an Edge

Claim: Given the adjacency matrix of an *n*-node multigraph and an edge $\{u, v\}$, one can contract the edge $\{u, v\}$ in time O(n).

- Row/column of combined node {u, v} is sum of rows/columns of u and v
- Row/column of u can be replaced by new row/column of combined node {u, v}
- Swap row/column of v with last row/column in order to have the new (n − 1)-node multigraph as a contiguous (n − 1) × (n − 1) submatrix

Finding a Random Edge

- We need to contract a uniformly random edge
- How to find a uniformly random edge in a multigraph?
 - Finding a random non-zero entry (with the right probability) in an adjacency matrix costs $O(n^2)$.

Idea for more efficient algorithm:

• First choose a random node *u*

- with probability proportional to the degree (#edges) of u

- Pick a random edge of *u*
 - only need to look at one row \rightarrow time O(n)

Edge Sampling:

1. Choose a node $u \in V$ with probability

2. Choose a uniformly random edge of u

D(a) Line

Choose a Random Node

- We need to choose a random node u with probability $\frac{\deg(u)}{2m}$
- Keep track of the number of edges *m* and maintain an array with the degrees of all the nodes
 - Can be done with essentially no extra cost when doing edge contractions

Choose a random node:

```
degsum = 0;
for all nodes u \in V:
with probability \frac{\deg(u)}{2m-\deg(u)}:
pick node u; terminate
else
degsum += \deg(u)
```


Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

- One instance consists of n-2 edge contractions
- Each edge contraction can be carried out in time O(n)
 Actually: O(current #nodes)
- Time per instance of the contraction algorithm: $O(n^2)$

Can We Do Better?

• Time $O(n^4 \log n)$ is not very spectacular, a simple max flow based implementation has time $O(n^4)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

- 1. The algorithm can be improved to beat every known deterministic algorithm.
- 1. It allows to obtain strong statements about the distribution of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree ≥ k
- Before contraction i, there are n + 1 i nodes and thus at least (n + 1 i)k/2 edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step *i* is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{\frac{n+1-i}{2}}.$$

Improving the Contraction Algorithm

For a specific min cut (A, B), if (A, B) survives the first i contractions,

 $\mathbb{P}(\text{edge crossing } (A, B) \text{ in contraction } \underline{i+1}) \leq \frac{2}{n-i}.$

- **Observation:** The probability only gets large for large *i*
- Idea: The early steps are much safer than the late steps.
 Maybe we can repeat the late steps more often than the early ones.

Safe Contraction Phase

Lemma: A given min cut (A, B) of an *n*-node graph *G* survives the first $n - \left[\frac{n}{\sqrt{2}} + 1\right]$ contractions, with probability $> \frac{1}{2}$.

Proof:

- Event \mathcal{E}_i : cut (A, B) survives contraction *i*
- Probability that (A, B) survives the first $\underline{n t}$ contractions:

$$\sum_{n=2}^{n-2} \frac{n-3}{n-1} \frac{n-4}{n-2} \cdots \frac{t}{t+1} \frac{t}{t+2} \frac{t}{t+1} = \frac{t(t-1)}{n(n-1)}$$

$$t = \left[\frac{n}{2} + 1\right] > \frac{u}{12} + 1$$

$$\sum_{n=1}^{n-2} \frac{(\frac{u}{12} + 1)}{n(n-1)} > \frac{1}{12} + 1$$

$$\sum_{n=1}^{n-2} \frac{(\frac{u}{12} + 1)}{n(n-1)} > \frac{1}{12} \frac{1}{12} = \frac{1}{2}$$

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n/\sqrt{2}$ is an integer (for all *n* we will need it).
- Assume that a given min cut survives the first $n n/\sqrt{2}$ contractions with probability $\geq 1/_2$.

contract(*G*, *t*):

mincut(G):

Starting with <u>n</u>-node graph G, perform $n - t^{v}$ edge contraction such that the new graph has t nodes.

random

n - 15

$$ncut(G): = Mo = Sout ("mincut")$$
1. $X_1 := mincut (contract(G, n/\sqrt{2}))$
2. $X_2 := mincut (contract(G, n/\sqrt{2}))$

return min{ X_1, X_2 }; 3.

 $\underline{P(n)}$: probability that the above algorithm returns a min cut when applied to a graph with n nodes.

• Probability that X_1 is a min cut $\geq \frac{1}{2} \cdot \mathcal{P}(\sqrt[n]{2})$

Recursion:

$$P(u) \ge 1 - (1 - \frac{1}{2}P(\frac{u}{2}))^{2} = P(\frac{u}{2}) - \frac{1}{4}P(\frac{u}{2})^{2} P(2) = 1$$

Success Probability

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $1/\log_2 n$.

 $\chi - \frac{\chi^2}{4}$ monotourie $1 - \frac{\chi}{2}$

Proof (by induction on *n*):

Running Time

1.
$$X_1 \coloneqq \operatorname{mincut}\left(\operatorname{contract}\left(G, n/\sqrt{2}\right)\right);$$

2.
$$X_2 \coloneqq \underline{\text{mincut}} \left(\text{contract} \left(G, n/\sqrt{2} \right) \right);$$

$$\frac{\operatorname{Rasker} \operatorname{Thm}}{\operatorname{T}(n) = a \cdot \operatorname{T}(\frac{n}{b}) + O(n^{c})$$

$$C = 105 b^{a}$$

$$C = 105 b^{a}$$

$$L_{b} \operatorname{T}(n) = 0(n^{c} \cdot \log n)$$

Λ

a=2b=2

 $\underbrace{T(2) = O(1)}_{T(n) = O(n^2 \log n)}$

Recursion:

3.

• Recursive calls:
$$2T \left(\frac{n}{\sqrt{2}} \right)$$

return min{ X_1, X_2 };

• Number of contractions to get to $n/\sqrt{2}$ nodes: O(n)

$$\int T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2),$$

Running Time

in 7 C. lun

 $\left(1-\frac{1}{\log n}\right)^{\chi} < e^{-\chi/\log n}$

Theorem: The running time of the recursive, randomized min cut algorithm is $O(n^2 \log n)$.

Proof:

Can be shown in the usual way, by induction on n

Remark:

- The running time is only by an $O(\log n)$ -factor slower than the basic contraction algorithm.
- The success probability is exponentially better! (log²n) rt₁ - beats the best known det. algorithm ! Quan + n²logn If we want a min. cut whip. (with prob. 1- 1/42): we need O(log2n) rep. - muning time : O(n²-log³n) ~