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Types of Randomized Algorithms

Las Vegas Algorithm:

• always a correct solution

• running time is a random variable

• Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

• probabilistic correctness guarantee (mostly correct)

• fixed (deterministic) running time 

• Example: primality test
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Minimum Cut

Reminder: Given a graph 𝐺 = 𝑉, 𝐸 , a cut is a partition (𝐴, 𝐵)
of 𝑉 such that 𝑉 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 = ∅, 𝐴, 𝐵 ≠ ∅

Size of the cut (𝑨, 𝑩): # of edges crossing the cut

• For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size 𝜆(𝐺))

Maximum-flow based algorithm:

• Fix 𝑠, compute min 𝑠-𝑡-cut for all 𝑡 ≠ 𝑠

• 𝑂 𝑚 ⋅ 𝜆 𝐺 = 𝑂(𝑚𝑛) per 𝑠-𝑡 cut

• Gives an O 𝑚𝑛𝜆 𝐺 = 𝑂(𝑚𝑛2)-algorithm

Best-known deterministic algorithm: 𝑂 𝑚𝑛 + 𝑛2 log 𝑛
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Edge Contractions

• In the following, we consider multi-graphs that can have 
multiple edges (but no self-loops)

Contracting edge {𝒖, 𝒗}:

• Replace nodes 𝑢, 𝑣 by new node 𝑤

• For all edges {𝑢, 𝑥} and {𝑣, 𝑥}, add an edge {𝑤, 𝑥}

• Remove self-loops created at node 𝑤
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Properties of Edge Contractions

Nodes:

• After contracting {𝑢, 𝑣}, the new node represents 𝑢 and 𝑣

• After a series of contractions, each node represents a subset of 
the original nodes

Cuts:

• Assume in the contracted graph, 𝑤 represents nodes 𝑆𝑤 ⊂ 𝑉

• The edges of a node 𝑤 in a contracted graph are in a one-to-one 
correspondence with the edges crossing the cut 𝑆𝑤 , 𝑉 ∖ 𝑆𝑤
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Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do

contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum 
cut with probability at least Τ1 𝑂(𝑛2).

• We will show this next.

Theorem: The random contraction algorithm can be implemented 
in time 𝑂(𝑛2).

• There are 𝑛 − 2 contractions, each can be done in time 𝑂(𝑛).

• We will see this later.
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Contractions and Cuts

Lemma: If two original nodes 𝑢, 𝑣 ∈ 𝑉 are merged into the same 
node of the contracted graph, there is a path connecting 𝑢 and 𝑣
in the original graph s.t. all edges on the path are contracted.

Proof:

• Contracting an edge {𝑥, 𝑦} merges the node sets represented by 
𝑥 and 𝑦 and does not change any of the other node sets.

• The claim the follows by induction on the number of edge 
contractions.
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Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity 
(i.e., the size of the min. cut) cannot get smaller.

Proof:

• All cuts in a (partially) contracted graph correspond to cuts of 
the same size in the original graph 𝐺 as follows:
– For a node 𝑢 of the contracted graph, let 𝑆𝑢 be the set of original nodes 

that have been merged into 𝑢 (the nodes that 𝑢 represents)

– Consider a cut (𝐴, 𝐵) of the contracted graph

– 𝐴′, 𝐵′ with

𝐴′ ≔ራ

𝑢∈𝐴

𝑆𝑢 , 𝐵′ ≔ራ

𝑣∈𝐵

𝑆𝑣

is a cut of 𝐺.

– The edges crossing cut (𝐴, 𝐵) are in one-to-one correspondence with the 
edges crossing cut (𝐴′, 𝐵′).
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Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (𝐴, 𝐵) of the input 
graph 𝐺 if and only if it never contracts an edge crossing (𝐴, 𝐵).

Proof:

1. If an edge crossing (𝐴, 𝐵) is contracted, a pair of nodes 𝑢 ∈ 𝐴, 
𝑣 ∈ 𝑉 is merged into the same node and the algorithm outputs 
a cut different from (𝐴, 𝐵).

2. If no edge of (𝐴, 𝐵) is contracted, no two nodes 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵
end up in the same contracted node because every path 
connecting 𝑢 and 𝑣 in 𝐺 contains some edge crossing 𝐴, 𝐵

In the end there are only 2 sets  output is (𝐴, 𝐵)
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Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum 
cut is at least Τ2 𝑛(𝑛 − 1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph 𝐺 (no self-loops) is 𝑘, 
𝐺 has at least Τ𝑘𝑛 2 edges.

Proof:

• Min cut has size 𝑘⟹ all nodes have degree ≥ 𝑘
– A node 𝑣 of degree < 𝑘 gives a cut 𝑣 , 𝑉 ∖ 𝑣 of size < 𝑘

• Number of edges 𝑚 = Τ1 2 ⋅ σ𝑣 deg(𝑣)
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Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum 
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘

• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing 
(𝐴, 𝐵) gets contracted.

• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes
 and thus ≥ Τ𝑛 + 1 − 𝑖 𝑘 2 edges

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to 
contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most

𝑘

𝑛 + 1 − 𝑖 𝑘
2

=
2

𝑛 + 1 − 𝑖
.
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Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum 
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to 
contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most Τ2 𝑛+1−𝑖.

• Event ℰ𝑖: edge contracted in step 𝑖 is not crossing (𝐴, 𝐵)
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Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum 
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• ℙ ℰ𝑖+1|ℰ1 ∩⋯∩ ℰ𝑖 ≥ 1 − Τ2 𝑛−𝑖 =
𝑛−𝑖−2

𝑛−𝑖

• No edge crossing (𝐴, 𝐵) contracted: event ℰ = 𝑖=1ځ
𝑛−2ℰ𝑖
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Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛)
times, one of the 𝑂 𝑛2 log 𝑛 instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in 𝑐 ⋅
𝑛
2

⋅ ln 𝑛 iterations:

1 −
1
𝑛
2

𝑐⋅
𝑛
2
⋅ln 𝑛

< 𝑒−𝑐 ln 𝑛 =
1

𝑛𝑐

Corollary: The contraction algorithm allows to compute a minimum 
cut in 𝑂 𝑛4 log 𝑛 time w.h.p.

• It remains to show that each instance can be implemented in 
𝑂 𝑛2 time.
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Implementing Edge Contractions

Edge Contraction:

• Given: multigraph with 𝑛 nodes
– assume that set of nodes is {1, … , 𝑛}

• Goal: contract edge 𝑢, 𝑣

Data Structure

• We can use either adjacency lists or an adjacency matrix

• Entry in row 𝑖 and column 𝑗: #edges between nodes 𝑖 and 𝑗

• Example:

𝟏

𝟒

𝟐

𝟓

𝟑
𝐴 =

0 2 0
2 0 1
0 1 0

1 0
1 0
0 1

1 1 0
0 0 1

0 3
3 0



Algorithm Theory, WS 2018/19 Fabian Kuhn 16

Contracting An Edge

Example: Contract one of the edges between 3 and 5

1 2 3 4 5 6 7

1 0 1 0 3 0 0 0

2 1 0 1 0 1 2 0

3 0 1 0 0 2 2 0

4 3 0 0 0 1 0 0

5 0 1 2 1 0 1 1

6 0 2 2 0 1 0 1

7 0 0 0 0 1 1 0

1

2

4

3

5

7

6

{3,5}
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Contracting An Edge

Example: Contract one of the edges between 3 and 5

1 2 3 4 5 6 7

1 0 1 0 3 0 0 0

2 1 0 1 0 1 2 0

3 0 1 0 0 2 2 0

4 3 0 0 0 1 0 0

5 0 1 2 1 0 1 1

6 0 2 2 0 1 0 1

7 0 0 0 0 1 1 0

1

2

4

335

7

6

{3,5} 0 2 1 3 1
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Contracting An Edge

Example: Contract one of the edges between 3 and 5

1 2 35 4 6 7

1 0 1 0 3 0 0

2 1 0 2 0 2 0

35 0 2 0 1 3 1

4 3 0 1 0 0 0

6 0 2 3 0 0 1

7 0 0 1 0 1 0

1

2

4

335

7

6

{3,5} 0 2 1 3 1



Algorithm Theory, WS 2018/19 Fabian Kuhn 19

Contracting an Edge

Claim: Given the adjacency matrix of an 𝑛-node multigraph and
an edge {𝑢, 𝑣}, one can contract the edge 𝑢, 𝑣 in time 𝑂(𝑛).

• Row/column of combined node {𝑢, 𝑣} is sum of rows/columns 
of 𝑢 and 𝑣

• Row/column of 𝑢 can be replaced by new row/column of 
combined node {𝑢, 𝑣}

• Swap row/column of 𝑣 with last row/column in order to have 
the new  (𝑛 − 1)-node multigraph as a contiguous
𝑛 − 1 × (𝑛 − 1) submatrix
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Finding a Random Edge

• We need to contract a uniformly random edge

• How to find a uniformly random edge in a multigraph?
– Finding a random non-zero entry (with the right probability) in an 

adjacency matrix costs 𝑂 𝑛2 .

Idea for more efficient algorithm:

• First choose a random node 𝑢
– with probability proportional to the degree (#edges) of 𝑢

• Pick a random edge of 𝑢
– only need to look at one row  time 𝑂 𝑛



Algorithm Theory, WS 2018/19 Fabian Kuhn 21

Choose a Random Node

Edge Sampling:

1. Choose a node 𝑢 ∈ 𝑉 with probability

deg(𝑢)

σ𝑣∈𝑉 deg(𝑣)
=
deg(𝑢)

2𝑚

2. Choose a uniformly random edge of 𝑢



Algorithm Theory, WS 2018/19 Fabian Kuhn 22

Choose a Random Node

• We need to choose a random node 𝑢 with probability 
deg 𝑢

2𝑚

• Keep track of the number of edges 𝑚 and maintain an array with 
the degrees of all the nodes
– Can be done with essentially no extra cost when doing edge contractions

Choose a random node:
degsum = 0;

for all nodes 𝑢 ∈ 𝑉:

with probability 
deg 𝑢

2𝑚−degsum
:

pick node 𝑢; terminate

else

degsum += deg 𝑢
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Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛)
times, one of the 𝑂 𝑛2 log 𝑛 instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum 
cut in 𝑂 𝑛4 log 𝑛 time w.h.p.

• One instance consists of 𝑛 − 2 edge contractions

• Each edge contraction can be carried out in time 𝑂(𝑛)
– Actually: 𝑂 current #nodes

• Time per instance of the contraction algorithm: 𝑂 𝑛2
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Can We Do Better?

• Time 𝑂(𝑛4 log 𝑛) is not very spectacular, a simple max flow 
based implementation has time 𝑂 𝑛4 .

However, we will see that the contraction algorithm is 
nevertheless very interesting because:

1. The algorithm can be improved to beat every known 
deterministic algorithm.

1. It allows to obtain strong statements about the distribution 
of cuts in graphs.
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Better Randomized Algorithm

Recall:

• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘

• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing 
(𝐴, 𝐵) gets contracted.

• Throughout the algorithm, the edge connectivity is at least 𝑘
and therefore each node has degree ≥ 𝑘

• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes and thus at 
least Τ𝑛 + 1 − 𝑖 𝑘 2 edges

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability 
to contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most

𝑘

𝑛 + 1 − 𝑖 𝑘
2

=
2

𝑛 + 1 − 𝑖
.
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Improving the Contraction Algorithm

• For a specific min cut (𝐴, 𝐵), if (𝐴, 𝐵) survives the first 𝑖
contractions,

ℙ edge crossing 𝐴, 𝐵 in contraction 𝑖 + 1 ≤
2

𝑛 − 𝑖
.

• Observation: The probability only gets large for large 𝑖

• Idea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early 
ones.
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Safe Contraction Phase

Lemma: A given min cut (𝐴, 𝐵) of an 𝑛-node graph 𝐺 survives the 

first 𝑛 − ൗ
𝑛

2
+ 1 contractions, with probability > Τ1 2. 

Proof:

• Event ℰ𝑖: cut (𝐴, 𝐵) survives contraction 𝑖

• Probability that (𝐴, 𝐵) survives the first 𝑛 − 𝑡 contractions:
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Better Randomized Algorithm

Let’s simplify a bit:

• Pretend that 𝑛/ 2 is an integer (for all 𝑛 we will need it).

• Assume that a given min cut survives the first 𝑛 − ൗ
𝑛

2

contractions with probability ≥ Τ1 2.

𝐜𝐨𝐧𝐭𝐫𝐚𝐜𝐭(𝑮, 𝒕):

• Starting with 𝑛-node graph 𝐺, perform 𝑛 − 𝑡 edge contractions
such that the new graph has 𝑡 nodes.

𝐦𝐢𝐧𝐜𝐮𝐭(𝑮):

1. 𝑋1 ≔ mincut contract 𝐺, Τ𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, Τ𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;
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Success Probability

𝐦𝐢𝐧𝐜𝐮𝐭(𝑮):

1. 𝑋1 ≔ mincut contract 𝐺, Τ𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, Τ𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;

𝑷(𝒏): probability that the above algorithm returns a min cut when
applied to a graph with 𝑛 nodes. 

• Probability that 𝑋1 is a min cut ≥

Recursion:
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Success Probability

Theorem: The recursive randomized min cut algorithm returns a 
minimum cut with probability at least Τ1 log2 𝑛.

Proof (by induction on 𝑛):

𝑃 𝑛 = 𝑃
𝑛

2
−
1

4
⋅ 𝑃

𝑛

2

2

, 𝑃 2 = 1
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Running Time

1. 𝑋1 ≔ mincut contract 𝐺, Τ𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, Τ𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;

Recursion:

• 𝑇(𝑛): time to apply algorithm to 𝑛-node graphs

• Recursive calls: 2𝑇 ൗ
𝑛

2

• Number of contractions to get to ൗ
𝑛

2
nodes: 𝑂 𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛2 , 𝑇 2 = 𝑂(1)
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Running Time

Theorem: The running time of the recursive, randomized min cut 
algorithm is 𝑂(𝑛2 log 𝑛).

Proof:

• Can be shown in the usual way, by induction on 𝑛

Remark:

• The running time is only by an 𝑂(log 𝑛)-factor slower than 
the basic contraction algorithm.

• The success probability is exponentially better!


