

Chapter 7 Randomization

Algorithm Theory WS 2018/19

Fabian Kuhn

Minimum Cut

Reminder: Given a graph G = (V, E), a cut is a partition (A, B) of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (A, B): # of edges crossing the cut

For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Maximum-flow based algorithm:

- Fix s, compute min s-t-cut for all $t \neq s$
- $O(m \cdot \lambda(G)) = O(mn)$ per s-t cut
- Gives an $O(mn\lambda(G)) = O(mn^2)$ -algorithm

Best-known deterministic algorithm: $O(mn + n^2 \log n)$

Edge Contractions

 In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge $\{u, v\}$:

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do
 contract a uniformly random edge
return cut induced by the last two remaining nodes
 (cut defined by the original node sets represented by the last 2 nodes)

Theorem: The probability that the algorithm outputs a (specific) minimum cut (A, B) is at least $2/n(n-1) = 2/\binom{n}{2}$.

- Consider a fixed min cut (A, B), assume (A, B) has size k
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{n+1-i}.$$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a (specific) minimum cut (A, B) is at least $2/n(n-1) = 2/\binom{n}{2}$.

Proof:

• Event \mathcal{E}_i : edge contracted in step i is **not** crossing (A, B)

$$\mathbb{P}(\mathcal{E}_{i+1}|\mathcal{E}_1 \cap \dots \cap \mathcal{E}_i) \ge 1 - \frac{2}{n-i} = \frac{n-i-2}{n-i}$$

Probability that cut (A, B) survives to the end:

$$\mathbb{P}(\mathcal{E}_1 \cap \dots \cap \mathcal{E}_{n-2}) = \prod_{i=0}^{n-3} \mathbb{P}(\mathcal{E}_{i+1} | \mathcal{E}_1 \cap \dots \cap \mathcal{E}_i)$$

Number of Minimum Cuts

- Given a graph G, how many minimum cuts can there be?
- Or alternatively: If G has edge connectivity k, how many ways are there to remove k edges to disconnect G?
- Note that the total number of cuts is large.

Number of Minimum Cuts

Example: Ring with *n* nodes

- Minimum cut size: 2
- Every two edges induce a min cut
- Number of edge pairs:

 $\binom{n}{2}$

 Are there graphs with more min cuts?

Number of Min Cuts

Theorem: The number of minimum cuts of a graph is at most $\binom{n}{2}$.

Proof:

- Assume there are s min cuts
- For $i \in \{1, ..., s\}$, define event C_i : $C_i \coloneqq \{\text{basic contraction algorithm returns min cut } i\}$
- We know that for $i \in \{1, ..., s\}$: $\mathbb{P}(\mathcal{C}_i) = 1/\binom{n}{2}$
- Events C_1, \dots, C_S are disjoint:

$$\mathbb{P}\left(\bigcup_{i=1}^{s} \mathcal{C}_{i}\right) = \sum_{i=1}^{s} \mathbb{P}(\mathcal{C}_{i}) = \frac{s}{\binom{n}{2}}$$

Counting Larger Cuts

- In the following, assume that min cut has size $\lambda = \lambda(G)$
- How many cuts of size $\leq k = \alpha \cdot \lambda$ can a graph have?
- Consider a specific cut (A, B) of size $\leq k$
- As before, during the contraction algorithm:
 - − min cut size $\geq \lambda$
 - − number of edges $\geq \lambda \cdot \#$ nodes/2
 - cut (A, B) remains as long as none of its edges gets contracted
- Prob. that an edge crossing (A, B) is chosen in i^{th} contraction

$$= \frac{k}{\text{\#edges}} \le \frac{2k}{\lambda \cdot \text{\#nodes}} = \frac{2\alpha}{n - i + 1}$$

For simplicity, in the following, assume that 2α is an integer

Counting Larger Cuts

Lemma: If $2\alpha \in \mathbb{N}$, the probability that cut (A, B) of size $\alpha \cdot \lambda$ survives the first $n-2\alpha$ edge contractions is at least

$$\frac{(2\alpha)!}{n(n-1)\cdot\ldots\cdot(n-2\alpha+1)} \ge \frac{2^{2\alpha-1}}{n^{2\alpha}}.$$

Proof:

• As before, event \mathcal{E}_i : cut (A, B) survives contraction i

Number of Cuts

Theorem: If $2\alpha \in \mathbb{N}$, the number of edge cuts of size at most $\alpha \cdot \lambda(G)$ in an n-node graph G is at most $n^{2\alpha}$.

Proof:

Remark: The bound also holds for general $\alpha \geq 1$.

Application: Resilience To Edge Failures

- Consider a connected network (graph) G with n nodes
- Assume that each link (edge) of ${\it G}$ fails independently with probability p
- How large can p be such that the remaining graph is still connected with probability 1ε ?
- In the exercises, you will show that if $p \le 1 \frac{c \cdot \ln(n)}{n}$ for a sufficiently large constant c > 0, the graph remains connected with high probability.
 - Idea: graph connected ⇔ there is an edge over each possible cut
 - Analyze the probability that a cut of a specific size survives
 - Do a union bound over all possible cut sizes and all cuts of that size