\\ \title{

Chapter 7

 \title{
Chapter 7

 Randomization}

亏픈

Algorithm Theory WS 2018/19

Fabian Kuhn

Minimum Cut

Reminder: Given a graph $G=(V, E)$, a cut is a partition (A, B) of V such that $V=A \cup B, A \cap B=\emptyset, A, B \neq \emptyset$

Size of the cut $(\boldsymbol{A}, \boldsymbol{B})$: \# of edges crossing the cut

- For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)
Maximum-flow based algorithm:

- Fix s, compute min s - t-cut for all $t \neq s$
- $O(m \cdot \lambda(G))=O(m n)$ per s - t cut
- Gives an $O(m n \lambda(G))=O\left(m n^{2}\right)$-algorithm

Best-known deterministic algorithm: $O\left(m n+n^{2} \log n\right)$

Edge Contractions

- In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge $\{\boldsymbol{u}, \boldsymbol{v}\}$:

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Randomized Contraction Algorithm

Algorithm:

while there are >2 nodes do min degree. $\geqslant k$ contract a uniformly random edge return cut induced by the last two remaining nodes
 (cut defined by the original node sets represented by the last 2 nodes)

Theorem: The probability that the algorithm outputs a (specific) minimum cut (A, B) is at least $2 / n(n-1)=2 /\binom{n}{2}$.

- Consider a fixed min cut (A, B), assume (A, B) has size k
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{k}{\frac{(n+1-i) k}{2}}=\frac{2}{n+1-i}
$$

$$
u-(i-1)=u-i+1
$$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a (specific) minimum cut (A, B) is at least $2 / n(n-1)=2 /\binom{n}{2}$.

Proof:

- Event \mathcal{E}_{i} : edge contracted in step i is not crossing (A, B)

$$
\mathbb{P}\left(\underline{\varepsilon_{i+1}} \mid \underline{\varepsilon_{1} \cap \cdots \cap \varepsilon_{i}}\right) \geq 1-\frac{2}{n-i}=\frac{n-i-2}{n-i}
$$

- Probability that cut (A, B) survives to the end:

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{n-2}\right)=\prod_{i=0}^{n-3} \mathbb{P}\left(\mathcal{E}_{i+1} \mid \mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{i}\right) \\
= & \frac{k-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdot \cdots \cdot \frac{2}{3} \cdot \frac{1}{2}=\frac{2}{u(n-1)}
\end{aligned}
$$

Number of Minimum Cuts $<-\operatorname{cut}+\sec -1$

- Given a graph G, how many minimum cuts can there be?
- Or alternatively: If G has edge connectivity $\frac{k_{2} \text { ' }}{k \text {, how many ways }}$ are there to remove k edges to disconnect G ?
- Note that the total number of cuts is large.
n nodes cut partition of the n nodes into 2 uon-empty parts

$$
\begin{array}{r}
\text { how many cuts ore there? } \\
\qquad \begin{array}{r}
(A, B) \\
(A, V, A)
\end{array}(B, A)
\end{array}
$$

Number of Minimum Cuts

Example: Ring with n nodes

- Minimum cut size: 2
- Every two edges induce a min cut
- Number of edge pairs:

- Are there graphs with more min cuts?

Number of Min Cuts

Theorem: The number of minimum cuts of a graph is at most $\binom{n}{2}$. Proof:

- Assume there are s min cuts
- For $i \in\{1, \ldots, s\}$, define event \mathcal{C}_{i} :

$$
\mathcal{C}_{i}:=\{\text { basic contraction algorithm returns min cut } i\}
$$

- We know that for $i \in\{1, \ldots, s\}: \underline{\mathbb{P}\left(\mathcal{C}_{i}\right)} \geq 1 /\binom{n}{2}=\frac{2}{n(n-1)}$
- Events $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$ are disjoint:

$$
\backslash \geqslant \mathbb{P}\left(\bigcup_{i=1}^{s} \mathcal{c}_{i}\right)=\sum_{i=1}^{s} \mathbb{P}\left(\mathcal{C}_{i}\right) \geq \frac{s}{\binom{n}{2} \quad} \quad \begin{aligned}
& \frac{S}{\binom{n}{2}} \leq 1 \\
& S \leq\binom{ n}{2}
\end{aligned}
$$

Counting Larger Cuts

- In the following, assume that min cut has size $\lambda=\underline{\lambda(G)}$
- How many cuts of size $\leq k=\underline{\alpha \cdot \lambda}$ can a graph have?
- Consider a specific cut (A, B) of size $\leq k$
- As before, during the contraction algorithm:
- min cut size $\geq \lambda$
- number of edges $\geq \lambda \cdot \#$ nodes $/ 2$
- cut $\xlongequal{(A, B)}$ remains as long as none of its edges gets contracted
- Prob. that an edge crossing (A, B) is chosen in $i^{\text {th }}$ contraction

$$
\leq \frac{k}{\# \text { edges }} \leq \frac{\overline{2 k}}{\lambda \cdot \text { \#nodes }}=\frac{2 \alpha}{n-i+1}
$$

For simplicity, in the following, assume that 2α is an integer

Counting Larger Cuts

Lemma: If $2 \alpha \in \mathbb{N}$, the probability that cut (A, B) of size $\underline{\alpha \cdot \lambda}$ survives the first $n-2 \alpha$ edge contractions is at least

$$
\frac{(2 \alpha)!}{n(n-1) \cdot \ldots \cdot(n-2 \alpha+1)} \geq \xlongequal{\frac{2^{2 \alpha-1}}{n^{2 \alpha}}}
$$

Proof:

- As before, event $\underline{\underline{\varepsilon_{i}}}$: cut (A, B) survives contraction i
$\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \ldots$
$=\frac{n-2 \alpha}{n} \cdot \frac{n-2 x-1}{n-1} \cdot \frac{n-2 x-2}{n-2} \cdot \ldots \cdot \frac{2}{2 x+2} \cdot \frac{1}{2 \alpha+1}$
$=\frac{1 \cdot 2 \cdot 3 \cdot \cdots \cdot 2 x}{n(n-1)(n-2) \cdots(n-2 x+1)}=\frac{(2 x)!}{n(n+1) \ldots(n-2 x+1)}=\frac{1}{\binom{n}{2 x}}$

Number of Cuts
Theorem: If $2 \alpha \in \mathbb{N}$, the number of edge cuts of size at most α. $\lambda(G)$ in an n-node graph G is at most $n^{2 \alpha}$.
Proof:

$$
\mathbb{P}(\cot (A, B) \text { survives } n-2 x \text { contr. }) \geq \frac{2^{2 \alpha-1}}{n^{2 \alpha}}
$$

$2 x$ nodes

$$
\# \text { cauls } \leq 2^{2 x-1}
$$

return a random remaining cut

$$
\mathbb{P}(\operatorname{return}(A, B)) \geq \frac{2^{2 \alpha-1}}{n^{2 \alpha}} \cdot \frac{1}{2^{2 \alpha-1}}=\frac{1}{n^{2 \alpha}}
$$

$$
\Rightarrow \leqslant n^{2 a} \text { cuts of sine } \leqslant \alpha \cdot \lambda
$$

Remark: The bound also holds for general $\alpha \geq 1$.

Application: Resilience To Edge Failures

- Consider a connected network (graph) G with n nodes
- Assume that each link (edge) of G fails independently with probability p
- How large can p be such that the remaining graph is still connected with probability $1-\varepsilon$?
- In the exercises, you will show that if $p \leq 1-\frac{c \cdot \ln (n)}{\lambda}$ for a sufficiently large constant $c>0$, the graph remains connected with high probability.
- Idea: graph connected \Leftrightarrow there is an edge over each possible cut
- Analyze the probability that a cut of a specific size survives
- Do a union bound over all possible cut sizes and all cuts of that size

