
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2018/19

Fabian Kuhn

Algorithm Theory, WS 2018/19 Fabian Kuhn 2

Approximation Algorithms

• Optimization appears everywhere in computer science

• We have seen many examples, e.g.:
– scheduling jobs

– traveling salesperson

– maximum flow, maximum matching

– minimum spanning tree

– minimum vertex cover

– …

• Many discrete optimization problems are NP-hard

• They are however still important and we need to solve them

• As algorithm designers, we prefer algorithms that produce
solutions which are provably good, even if we can’t compute
an optimal solution.

Algorithm Theory, WS 2018/19 Fabian Kuhn 3

Approximation Algorithms: Examples

We have already seen two approximation algorithms

• Metric TSP: If distances are positive and satisfy the triangle
inequality, the greedy tour is only by a log-factor longer than an
optimal tour

• Maximum Matching and Vertex Cover: A maximal matching
gives solutions that are within a factor of 2 for both problems.

Algorithm Theory, WS 2018/19 Fabian Kuhn 4

Approximation Ratio

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐢𝐧
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

Algorithm Theory, WS 2018/19 Fabian Kuhn 5

Example: Load Balancing

We are given:

• 𝑚 machines 𝑀1, … ,𝑀𝑚

• 𝑛 jobs, processing time of job 𝑖 is 𝑡𝑖

Goal:

• Assign each job to a machine such that the makespan is
minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore
want to get a good approximation for the problem.

Algorithm Theory, WS 2018/19 Fabian Kuhn 6

Greedy Algorithm

There is a simple greedy algorithm:

• Go through the jobs in an arbitrary order

• When considering job 𝑖, assign the job to the machine that
currently has the smallest load.

Example: 3 machines, 12 jobs

3 4 2 613 4 4 2 51

Greedy Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3

4

2 3

1 6

4

4

2

1 5

Optimal Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3 4 2 13

4

4 51

3

3 6 3

2

3 4 2 613 4 4 2 513

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖

• Lower bound can be far from 𝑇∗:
– 𝑚 machines, 𝑚 jobs of size 1, 1 job of size 𝑚

𝑇∗ = 𝑚,
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖 = 2

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖

• Second lower bound on optimal makespan 𝑇∗:

𝑇∗ ≥ max
1≤𝑖≤𝑛

𝑡𝑖

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e.,
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For machine 𝑘, let 𝑇𝑘 be the time used by machine 𝑘

• Consider some machine 𝑀𝑖 for which 𝑇𝑖 = 𝑇

• Assume that job 𝑗 is the last one schedule on 𝑀𝑖:

• When job 𝑗 is scheduled, 𝑀𝑖 has the minimum load

𝑇 − 𝑡𝑗 𝑡𝑗𝑴𝒊:

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e.,
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For all machines 𝑀𝑘: load 𝑇𝑘 ≥ 𝑇 − 𝑡𝑗

Algorithm Theory, WS 2018/19 Fabian Kuhn 11

Can We Do Better?

The analysis of the greedy algorithm is almost tight:

• Example with 𝑛 = 𝑚 𝑚 − 1 + 1 jobs

• Jobs 1,… , 𝑛 − 1 = 𝑚(𝑚 − 1) have 𝑡𝑖 = 1, job 𝑛 has 𝑡𝑛 = 𝑚

Greedy Schedule:

𝑀1:

𝑀2:

𝑀3:

𝑀𝑚:

⋮

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

⋯

⋯

⋯

⋯

⋮

𝑡𝑛 = 𝑚

Algorithm Theory, WS 2018/19 Fabian Kuhn 12

Improving Greedy

Bad case for the greedy algorithm:
One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

1. Sort jobs by decreasing length s.t. 𝑡1 ≥ 𝑡2 ≥ ⋯ ≥ 𝑡𝑛
2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If 𝑛 > 𝑚: 𝑇∗ ≥ 𝑡𝑚 + 𝑡𝑚+1 ≥ 2𝑡𝑚+1

Proof:

• Two of the first 𝑚 + 1 jobs need to be scheduled on the same
machine

• Jobs 𝑚 and 𝑚+ 1 are the shortest of these jobs

Algorithm Theory, WS 2018/19 Fabian Kuhn 13

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio ≤ Τ3 2.

Proof:

• We show that 𝑇 ≤ Τ3 2 ⋅ 𝑇
∗

• As before, we consider the machine 𝑀𝑖 with 𝑇𝑖 = 𝑇

• Job 𝑗 (of length 𝑡𝑗) is the last one scheduled on machine 𝑀𝑖

• If 𝑗 is the only job on 𝑀𝑖, we have 𝑇 = 𝑇∗

• Otherwise, we have 𝑗 ≥ 𝑚 + 1
– The first 𝑚 jobs are assigned to 𝑚 distinct machines

Algorithm Theory, WS 2018/19 Fabian Kuhn 14

Set Cover

Input:

• A set of elements 𝑋 and a collection 𝒮 of subsets 𝑋, i.e., 𝒮 ⊆ 2𝑋

– such that ڂ𝑆∈𝒮 𝑆 = 𝑋

Set Cover:

• A set cover 𝒞 of (𝑋, 𝒮) is a subset of the sets 𝒮 which covers 𝑋:

ራ

𝑆∈𝒞

𝑆 = 𝑋

Example: 𝑿

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

Minimum (Weighted) Set Cover

Minimum Set Cover:

• Goal: Find a set cover 𝒞 of smallest possible size
– i.e., over 𝑋 with as few sets as possible

Minimum Weighted Set Cover:

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤𝑆 > 0

• Goal: Find a set cover 𝒞 of minimum weight

Example:
𝑿

Algorithm Theory, WS 2018/19 Fabian Kuhn 16

Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 to 𝒞 s.t. 𝑆 covers as many
uncovered elements as possible

Example:

Algorithm Theory, WS 2018/19 Fabian Kuhn 17

Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with the best weight per
newly covered element ratio (set with best efficiency):

𝑆 = arg min
𝑆∈𝒮∖𝒞

𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Analysis of Greedy Algorithm:

• Assign a price 𝑝 𝑥 to each element 𝑥 ∈ 𝑋:
The efficiency of the set when covering the element

• If covering 𝑥 with set 𝑆, if partial cover is 𝒞 before adding 𝑆:

𝑝 𝑒 =
𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Algorithm Theory, WS 2018/19 Fabian Kuhn 18

Weighted Set Cover: Greedy Algorithm

Example:

• Universe 𝑋 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Sets 𝒮 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6

𝑆1 = 1, 2, 3, 4, 5 , 𝑤𝑆1 = 4

𝑆2 = 2, 6, 7 , 𝑤𝑆2 = 1

𝑆3 = 1, 6, 7, 8, 9 , 𝑤𝑆3 = 4

𝑆4 = 2, 4, 7, 9, 10 , 𝑤𝑆4 = 6

𝑆5 = 1, 3, 5, 6, 7, 8, 9, 10 , 𝑤𝑆5 = 9

𝑆6 = 9, 10 , 𝑤𝑆6 = 3

Algorithm Theory, WS 2018/19 Fabian Kuhn 19

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Algorithm Theory, WS 2018/19 Fabian Kuhn 20

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Algorithm Theory, WS 2018/19 Fabian Kuhn 21

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Theorem: The approximation ratio of the greedy minimum
(weighted) set cover algorithm is at most 𝑯𝒔 ≤ 𝟏 + 𝐥𝐧 𝒔, where 𝑠
is the cardinality of the largest set (𝑠 = max

𝑆∈𝒮
|𝑆|).

Algorithm Theory, WS 2018/19 Fabian Kuhn 22

Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the

approximation ratio of the greedy algorithm is ≥ 1 − 𝑜 1 ⋅ ln 𝑠.

• if 𝑠 is the size of the largest set... (𝑠 can be linear in 𝑛)

Let’s show that the approximation ratio is at least Ω log 𝑛 ...

𝐎𝐏𝐓 = 𝟐

𝐆𝐑𝐄𝐄𝐃𝐘 ≥ 𝐥𝐨𝐠𝟐 𝒏

Algorithm Theory, WS 2018/19 Fabian Kuhn 23

Set Cover: Better Algorithm?

An approximation ratio of ln 𝑛 seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless P ≈ NP

Feige showed that unless NP has deterministic 𝑛𝑂 log log 𝑛 -time
algorithms, minimum set cover cannot be approximated better

than by a factor 1 − 𝑜 1 ⋅ ln 𝑛 in polynomial time.

• Proof is based on the so-called PCP theorem
– PCP theorem is one of the main (relatively) recent advancements in

theoretical computer science and the major tool to prove approximation
hardness lower bounds

– Shows that every language in NP has certificates of polynomial length
that can be checked by a randomized algorithm by only querying a
constant number of bits (for any constant error probability)

Algorithm Theory, WS 2018/19 Fabian Kuhn 24

Set Cover: Special Cases

Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes of a graph 𝐺 = (𝑉, 𝐸) such that
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅.

Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

• Each node has a weight

• Find a vertex cover of minimum total weight

Algorithm Theory, WS 2018/19 Fabian Kuhn 25

Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: 𝑀 ≤ |𝑆|

Proof:

• At least one node of every edge 𝑢, 𝑣 ∈ 𝑀 is in 𝑆

• Needs to be a different node for different edges from 𝑀

Algorithm Theory, WS 2018/19 Fabian Kuhn 26

Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: If 𝑀 is maximal and 𝑆 is minimum, 𝑆 ≤ 2 𝑀

Proof:

• 𝑀 is maximal: for every edge 𝑢, 𝑣 ∈ 𝐸, either 𝑢 or 𝑣 (or both)
are matched

• Every edge 𝑒 ∈ 𝐸 is “covered” by at least one matching edge

• Thus, the set of the nodes of all matching edges gives a vertex
cover 𝑆 of size 𝑆 = 2|𝑀|.

Algorithm Theory, WS 2018/19 Fabian Kuhn 27

Maximal Matching Approximation

Theorem: The set of all matched nodes of a maximal matching 𝑀 is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2018/19 Fabian Kuhn 28

Set Cover: Special Cases

Dominating Set:
Given a graph 𝐺 = 𝑉, 𝐸 , a dominating set 𝑆 ⊆ 𝑉 is a subset of
the nodes 𝑉 of 𝐺 such that for all nodes 𝑢 ∈ 𝑉 ∖ 𝑆, there is a
neighbor 𝑣 ∈ 𝑆.

Algorithm Theory, WS 2018/19 Fabian Kuhn 29

Minimum Hitting Set

Given: Set of elements 𝑋 and collection of subsets 𝒮 ⊆ 2𝑋

– Sets cover 𝑋: ڂ𝑆∈𝒮 𝑆 = 𝑋

Goal: Find a min. cardinality subset 𝐻 ⊆ 𝑋 of elements such that

∀𝑆 ∈ 𝒮 ∶ 𝑆 ∩ 𝐻 ≠ ∅

Problem is equivalent to min. set cover with roles of sets and
elements interchanged

Sets

Elements

