

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Approximation Algorithms

- Optimization appears everywhere in computer science
- We have seen many examples, e.g.:
 - scheduling jobs
 - traveling salesperson <--
 - maximum flow, maximum matching ²
 - minimum spanning tree
 - 🗕 minimum vertex cover 🛹
 - •••
- Many discrete optimization problems are NP-hard
- They are however still important and we need to solve them
- As algorithm designers, we prefer algorithms that produce solutions which are provably good, even if we can't compute an optimal solution.

Approximation Algorithms: Examples

We have already seen two approximation algorithms

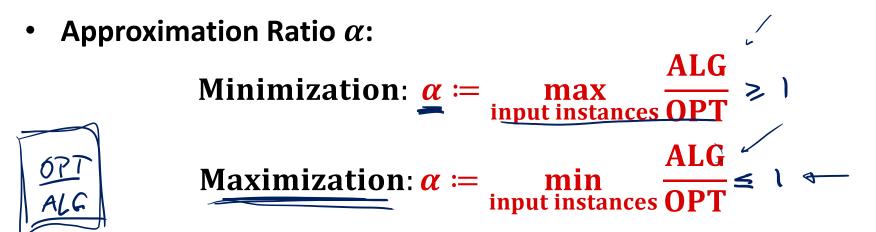
- Metric TSP: If distances are positive and satisfy the triangle inequality, the greedy tour is only by a log-factor longer than an optimal tour
- Maximum Matching and Vertex Cover: A maximal matching gives solutions that are within a factor of 2 for both problems.

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

• $OPT \ge 0$: optimal objective value ALG \ge 0 : objective value achieved by the algorithm



Example: Load Balancing

We are given:

- m machines M_1, \ldots, M_m
- n jobs, processing time of job i is t_i

Goal:

Assign each job to a machine such that the makespan is minimized

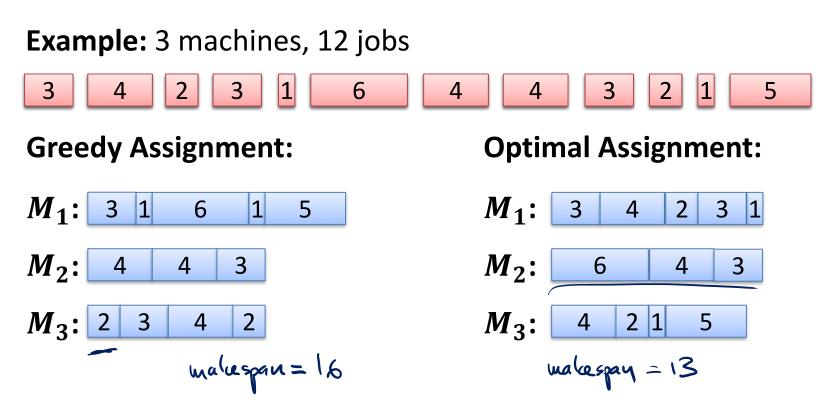
makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore want to get a good approximation for the problem.

Greedy Algorithm

There is a simple greedy algorithm:

- Go through the jobs in an arbitrary order
- When considering job *i*, assign the job to the machine that currently has the smallest load.



- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$\underline{T^*} \ge \frac{1}{m} \cdot \sum_{i=1}^{n} t_i$$

• Lower bound can be far from T^* :

-m machines, m jobs of size 1, 1 job of size m

$$\mathbf{w}_{+1} = \mathbf{m}, \qquad \frac{1}{m} \cdot \sum_{i=1}^{n} t_i = 2$$

m

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$\underline{T^* \geq \frac{1}{m} \cdot \sum_{i=1}^{n} t_i}$$

• Second lower bound on optimal makespan T^* :

$$\underline{T^*} \ge \max_{1 \le i \le n} t_i$$

 M_i :

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan \underline{T} of the greedy solution, we have $\underline{T} \leq 2T^*$. **Proof:** $T = \max_{\Sigma} T_{\Sigma}$

- For machine k, let T_k be the time used by machine k
- Consider some machine M_i for which $T_i = T$

G ∀E: T, ≥T-t;

• Assume that job j is the last one schedule on M_i :

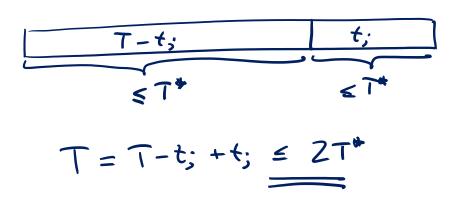
 $T-t_j$

When job j is scheduled, M_i has the minimum load

$$St_i \ge m \cdot (T-t_i)$$

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$. **Proof:**

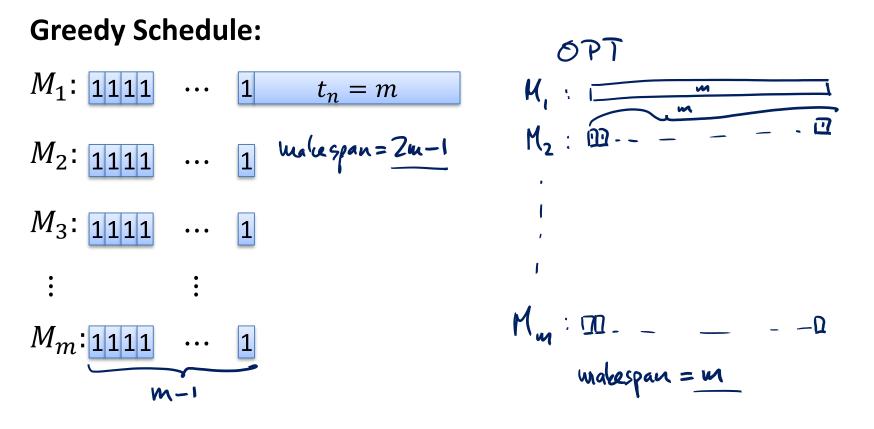
• For all machines M_k : load $T_k \ge T - t_j$ $\int_{a} T^* \ge \frac{1}{m} \le t_i \ge T - t_j$



Can We Do Better?

The analysis of the greedy algorithm is almost tight:

- Example with n = m(m 1) + 1 jobs
- Jobs 1, ..., n 1 = m(m 1) have $\underline{t_i = 1}$, job n has $\underline{t_n = m}$



Improving Greedy

Bad case for the greedy algorithm: One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

- 1. Sort jobs by decreasing length s.t. $t_1 \ge \underline{t_2} \ge \cdots \ge t_n$
- 2. Apply the greedy algorithm as before (in the sorted order)

T'zt,

Lemma: If
$$n > m$$
: $\underline{T}^* \ge \underline{t_m} + \underline{t_{m+1}} \ge \underline{2t_{m+1}}$ $N \ge m + \underline{1}$
Proof:

- Two of the first m + 1 jobs need to be scheduled on the same machine
- Jobs m and m + 1 are the shortest of these jobs

Fabian Kuhn

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio $\leq \frac{3}{2}$. **Proof:**

- We show that $T \leq \frac{3}{2} \cdot T^*$
- As before, we consider the machine M_i with $T_i = T$
- Job j (of length t_i) is the last one scheduled on machine M_i
- If j is the only job on M_i , we have $T = T^*$
- T* 2 2t ... 2 2t; Otherwise, we have $j \ge m + 1$ - The first *m* jobs are assigned to *m* distinct machines 1.333 jobs: 3, 3, 2, 2, 2 w=2 1,167 modified greed OPT: makespan = 7 approx. ratio = +

malespan=6

Fabian Kuhn

Set Cover

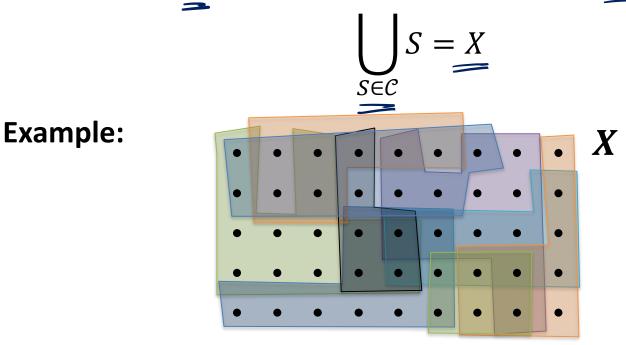
Input:

Sett system A set of elements X and a collection S of subsets X, i.e., $S \subseteq 2^X$ •

- such that
$$\bigcup_{S \in \mathcal{S}} S = X$$

Set Cover:

A set cover C of (X, S) is a subset of the set<u>s</u> S which covers X: •



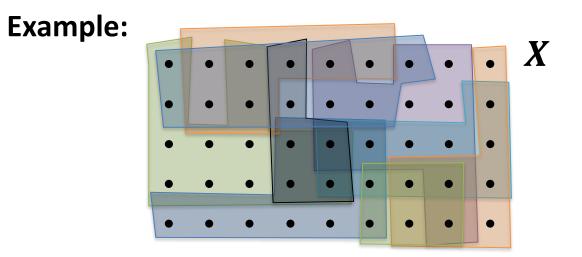
Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
 - i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

- Each set $S \in S$ has a weight $w_S > 0$
- **Goal:** Find a set cover \mathcal{C} of minimum weight

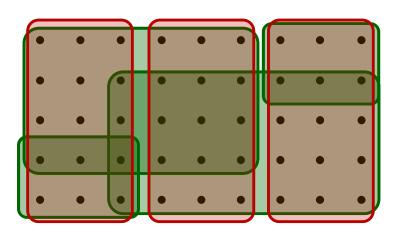


Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set S ∈ S \ C to C s.t. S covers as many uncovered elements as possible

Example:



Greedy Weighted Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set S ∈ S \ C with the best weight per newly covered element ratio (set with best efficiency):

$$S = \arg\min_{\substack{S \in S \setminus C}} \frac{w_S}{\left| S \setminus \bigcup_{T \in C} T \right|}$$

Analysis of Greedy Algorithm:

- Assign a price p(x) to each element $x \in X$: The efficiency of the set when covering the element
- If covering x with set S, if partial cover is C before adding S:

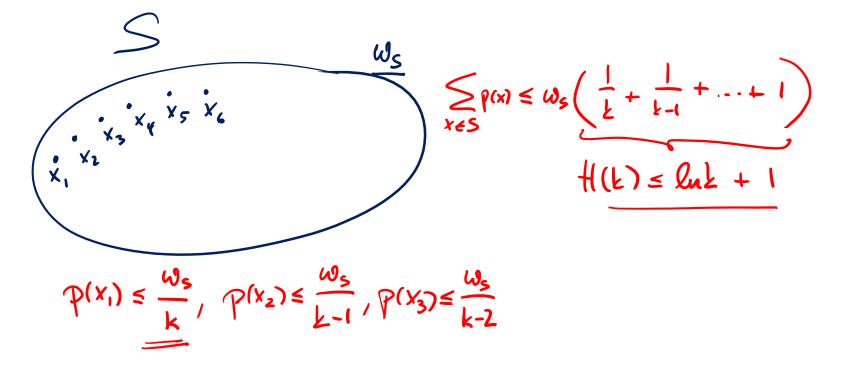
$$p(e) = \frac{W_S}{|S \setminus \bigcup_{T \in \mathcal{C}} T|} \quad \text{at the end} \\ \sum_{x \in X} p(x) = \text{total neight of} \\ x \in X \quad \text{set const} \end{cases}$$

Example:

- Universe $X = \{ \underline{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} \}$
- Sets $S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$ $w_{S_1} = 4^{4}$ $S_1 = \{1, 2, 3, 4, 5\},\$ $S_2 = \{2, 6, 7\},\$ $W_{S_2} = 1$ $S_3 = \{ \mathbf{4}, \mathbf{6}, \mathbf{7}, 8, \mathbf{9} \},\$ $W_{S_2} = 4$ $S_{A} = \{2, 4, 7, 2, 10\},$ $w_{S_4} = 6$ $S_5 = \{ \mathbf{\hat{4}}, \mathbf{\hat{5}}, \mathbf{$ $W_{S_{5}} = 9$ $S_6 = \{ \$, \$ 0 \},$ $w_{S_c} = 3 - 3$, $+ \frac{1}{2} + \frac{$ 3' 5 total weight: J3/2 10-3/2 8,

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$



Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

Corollary: The total price of a set $S \in S$ of size |S| = k is $\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$

5 OPT · H(s)

total poice

 $\in \omega_{A} \cdot H(|A|)$

 $\leq W_{\rm A} \cdot H(s)$

WA

Corollary: The total price of a set $S \in S$ of size |S| = k is $\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$ $\underbrace{ \succeq \le 5}_{k \le 1}$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_s \leq 1 + \ln s$, where s is the cardinality of the largest set ($s = \max_{S \in S} |S|$). $\lim_{s \in S} |S|$

Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq (1 - o(1)) \cdot \ln s$.

• if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n)$...

								$\boldsymbol{\frown}$								<u>_</u>															
	•	•	•	•	•	•	•		•	٠	•	٠	٠	•	•		•		٠	•	•	•	•	•	•	•	•	•	•	٠	
4		<u> </u>	-				-								_	-															_
	•	•	•	•	•	•			•	•	•	•	•	•	•		٠	•		•	•	•	•	•	•	•	•	•	•	•	•
Ŀ			┛					\leftarrow								F															

OPT = 2 $GREEDY \ge \log_2 n$

Set Cover: Better Algorithm?

An approximation ratio of $\ln n$ seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless $P \approx NP$

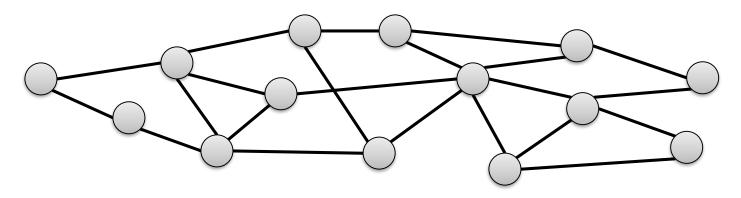
Feige showed that unless NP has deterministic $n^{O(\log \log n)}$ -time algorithms, minimum set cover cannot be approximated better than by a factor $(1 - o(1)) \cdot \ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
 - PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
 - Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Algorithm Theory, WS 2018/19

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph G = (V, E) such that $\forall \{u, v\} \in E, \quad \{u, v\} \cap S \neq \emptyset.$



Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

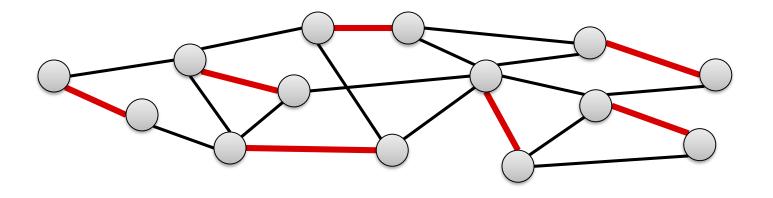
Vertex Cover vs Matching

Consider a matching *M* and a vertex cover *S*

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from *M*



Vertex Cover vs Matching

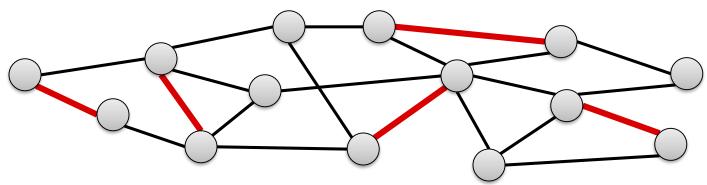
FREIBURG

Consider a matching *M* and a vertex cover *S*

Claim: If *M* is maximal and *S* is minimum, $|S| \le 2|M|$

Proof:

• *M* is maximal: for every edge {*u*, *v*} ∈ *E*, either *u* or *v* (or both) are matched



- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Algorithm Theory, WS 2018/19

Fabian Kuhn

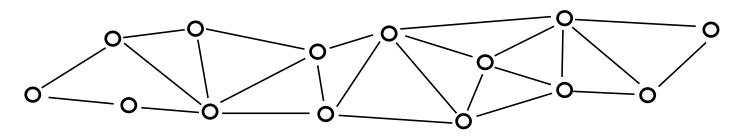
Maximal Matching Approximation

Theorem: The set of all matched nodes of a maximal matching *M* is a vertex cover of size at most twice the size of a min. vertex cover.

FREIBURG

Dominating Set:

Given a graph G = (V, E), a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in V \setminus S$, there is a neighbor $v \in S$.



Minimum Hitting Set

Given: Set of elements X and collection of subsets $S \subseteq 2^X$

- Sets cover
$$X: \bigcup_{S \in \mathcal{S}} S = X$$

Goal: Find a min. cardinality subset $H \subseteq X$ of elements such that $\forall S \in S : S \cap H \neq \emptyset$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

