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Approximation Ratio

An approximation algorithm is an algorithm that computes a 
solution for an optimization with an objective value that is provably 
within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐢𝐧
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓
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Metric TSP

Input: 

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites) 

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣) is dist from 𝑢 to 𝑣

• Distances define a metric on 𝑉:
𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢 ≥ 0, 𝑑 𝑢, 𝑣 = 0 ⟺ 𝑢 = 𝑣
∀𝑢, 𝑣, 𝑤 ∈ 𝑉 ∶ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

Solution: 

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of the vertices

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣1, 𝑣𝑛 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal: 

• Minimize length of TSP path or TSP tour 
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Metric TSP

• The problem is NP-hard

• We have seen that the greedy algorithm (always going to the 
nearest unvisited node) gives an 𝑂(log 𝑛)-approximation

• Can we get a constant approximation ratio?

• We will see that we can…
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TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the 
weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it’s length is the weight of the tree

Corollary: Since an optimal TSP 
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.
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The MST Tour

Walk around the MST…

19
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The MST Tour

Walk around the MST…
Cost (walk) = 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

Cost (tour)  < 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

19
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Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the 
metric TSP problem.

Proof:

• Triangle inequality  length of tour is at most 2 ⋅ weight(MST)

• We have seen that weight MST < opt. tour length

Can we do even better?
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Metric TSP Subproblems

Claim: Given a metric (𝑉, 𝑑) and (𝑉′, 𝑑) for 𝑉′ ⊆ 𝑉, the optimal 
TSP path/tour of (𝑉′, 𝑑) is at most as large as the optimal TSP 
path/tour of (𝑉, 𝑑).

Optimal TSP tour of 
nodes 𝟏, 𝟐,… , 𝟏𝟐

Induced TSP tour for
nodes 𝟏, 𝟐, 𝟓, 𝟖, 𝟏𝟎, 𝟏𝟐

𝐛𝐥𝐮𝐞 𝐭𝐨𝐮𝐫 ≤ 𝐠𝐫𝐞𝐞𝐧 𝐭𝐨𝐮𝐫
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TSP and Matching

• Consider a metric TSP instance (𝑉, 𝑑) with an even number of 
nodes |𝑉|

• Recall that a perfect matching is a matching 𝑀 ⊆ 𝑉 × 𝑉 such 
that every node of 𝑉 is incident to an edge of 𝑀.

• Because |𝑉| is even and because in a metric TSP, there is an 
edge between any two nodes 𝑢, 𝑣 ∈ 𝑉, any partition of 𝑉 into 
𝑉 /2 pairs is a perfect matching.

• The weight of a matching 𝑀 is the sum of the distances 
represented by all edges in 𝑀:

𝑤 𝑀 =෍
𝑢,𝑣 ∈𝑀

𝑑(𝑢, 𝑣)
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TSP and Matching

Lemma: Assume we are given a TSP instance 𝑉, 𝑑 with an even 
number of nodes. The length of an optimal TSP tour of (𝑉, 𝑑) is at 
least twice the weight of a minimum weight perfect matching of 
(𝑉, 𝑑).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect 
matchings
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Minimum Weight Perfect Matching

Claim: If 𝑉 is even, a minimum weight perfect matching of (𝑉, 𝑑)
can be computed in polynomial time

Proof Sketch:

• We have seen that a minimum weight perfect matching in a 
complete bipartite graph can be computed in polynomial time

• With a more complicated algorithm, also a minimum weight 
perfect matching in complete (non-bipartite) graphs can be 
computed in polynomial time

• The algorithm uses similar ideas as the bipartite weighted 
matching algorithm and it uses the Blossom algorithm as a 
subroutine 
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Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

• Get a graph on which every edge only has to be visited once 
(and where still the total edge weight is small compared to an 
optimal TSP tour)

Euler Tours:

• A tour that visits each edge of a graph exactly once is called an 
Euler tour

• An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

• That’s definitely not true for a tree, but can we modify our 
MST suitably?
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Euler Tour

Theorem: A connected (multi-)graph 𝐺 has an Euler tour if and only 
if every node of 𝐺 has even degree.

Proof:

• If 𝐺 has an odd degree node, it clearly cannot have an Euler tour

• If 𝐺 has only even degree nodes, a tour can be found recursively:

1. Start at some node

2. As long as possible, follow
an unvisited edge
– Gives a partial tour, the remaining

graph still has even degree

3. Solve problem on remaining components recursively

4. Merge the obtained tours into one tour that visits all edges 
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TSP Algorithm

1. Compute MST 𝑇

2. 𝑉odd: nodes that have an odd degree in 𝑇 (|𝑉odd| is even)

3. Compute min weight perfect matching 𝑀 of (𝑉odd, 𝑑)

4. (𝑉, 𝑇 ∪ 𝑀) is a (multi-)graph
with even degrees
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TSP Algorithm

5. Compute Euler tour on (𝑉, 𝑇 ∪ 𝑀)

6. Total length of Euler tour ≤
𝟑

𝟐
⋅ 𝐓𝐒𝐏𝐎𝐏𝐓

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice
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TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation 
ratio of at most Τ3 2.

Proof:

• The length of the Euler tour is ≤ Τ3 2 ⋅ TSPOPT
• Because of the triangle inequality, taking shortcuts can only 

make the tour shorter
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Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 > 0 and value 𝑣𝑖 > 0

• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at most 
𝑊 and total value is maximized:

max෍

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊 time 
units, try to execute a set of jobs that maximizes the total value
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Knapsack: Dynamic Programming Alg.

We have shown:

• If all item weights 𝑤𝑖 are integers, using dynamic programming, 
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr. 
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.
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Knapsack: Dynamic Programming Alg.

We have shown:

• If all item weights 𝑤𝑖 are integers, using dynamic programming, 
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr. 
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.

Problems:

• If 𝑊 and 𝑉 are large, the algorithms are not polynomial in 𝑛

• If the values or weights are not integers, things are even worse 
(and in general, the algorithms cannot even be applied at all)

Idea:

• Can we adapt one of the algorithms to at least compute an 
approximate solution?
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Approximation Algorithm

• The algorithm has a parameter 𝜀 > 0

• We assume that each item alone fits into the knapsack

• We define:

𝑉 ≔ max
1≤𝑖≤𝑛

𝑣𝑖 , ∀𝑖: ෝ𝑣𝑖 ≔
𝑣𝑖𝑛

𝜀𝑉
, ෠𝑉 ≔ max

1≤𝑖≤𝑛
ෝ𝑣𝑖

• We solve the problem with integer values ෝ𝑣𝑖 and weights 𝑤𝑖

using dynamic programming in time 𝑂(𝑛2 ⋅ ෠𝑉)

• If solution value < 𝑉, we take item with value 𝑉 instead

Theorem: The described algorithm runs in time 𝑂 Τ𝑛3 𝜀 .

Proof:

෠𝑉 = max
1≤𝑖≤𝑛

ෝ𝑣𝑖 = max
1≤𝑖≤𝑛

𝑣𝑖𝑛

𝜀𝑉
=

𝑉𝑛

𝜀𝑉
=

𝑛

𝜀
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Approximation Algorithm

Theorem: The approximation algorithm computes a feasible 
solution with approximation ratio at least 1 − 𝜀.

Proof:

• Define the set of all feasible solutions (subsets of [𝑛])

𝒮 ≔ 𝑆 ⊆ 1,… , 𝑛 ∶ ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• 𝑣 𝑆 : value of solution 𝑆 w.r.t. values 𝑣1, 𝑣2, …
ො𝑣 𝑆 : value of solution 𝑆 w.r.t. values ො𝑣1, ො𝑣2, …

• 𝑆∗: an optimal solution w.r.t. values 𝑣1, 𝑣2, …
መ𝑆 : an optimal solution w.r.t. values ො𝑣1, ො𝑣2, …

• Weights are not changed at all, hence, መ𝑆 is a feasible solution
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Approximation Algorithm

Theorem: The approximation algorithm computes a feasible 
solution with approximation ratio at least 1 − 𝜀.

Proof:

• We have

𝑣(𝑆∗) = ෍

𝑖∈𝑆∗

𝑣𝑖 = max
𝑆∈𝒮

෍

𝑖∈𝑆

𝑣𝑖 ,

ො𝑣 መ𝑆 =෍

𝑖∈ መ𝑆

ො𝑣𝑖 = max
𝑆∈𝒮

෍

𝑆∈𝒮

ෝ𝑣𝑖

• Because every item fits into the knapsack, we have

∀𝑖 ∈ 1,… , 𝑛 : 𝑣𝑖 ≤ 𝑉 ≤ ෍

𝑗∈𝑆∗

𝑣𝑗

• Also: ෝ𝑣𝑖 =
𝑣𝑖𝑛

𝜀𝑉
⟹ 𝑣𝑖 ≤

𝜀𝑉

𝑛
⋅ ෝ𝑣𝑖,   and ෝ𝑣𝑖 ≤

𝑣𝑖𝑛

𝜀𝑉
+ 1
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Approximation Algorithm

Theorem: The approximation algorithm computes a feasible 
solution with approximation ratio at least 1 − 𝜀.

Proof:

• We have

𝑣 𝑆∗ = ෍

𝑖∈𝑆∗

𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅ ෍

𝑖∈𝑆∗

ෝ𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅෍

𝑖∈ መ𝑆

ෝ𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅෍

𝑖∈ መ𝑆

1 +
𝑣𝑖𝑛

𝜀𝑉

• Therefore

𝑣 𝑆∗ = ෍

𝑖∈𝑆∗

𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅ መ𝑆 +෍

𝑖∈ መ𝑆

𝑣𝑖 ≤ 𝜀𝑉 + 𝑣 መ𝑆

• We have 𝑣 𝑆∗ ≥ 𝑉 and therefore

𝟏 − 𝜺 ⋅ 𝒗 𝑺∗ ≤ 𝒗 ෡𝑺
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Approximation Schemes

• For every parameter 𝜀 > 0, the knapsack algorithm computes a 
(1 + 𝜀)-approximation in time 𝑂( Τ𝑛3 𝜀).

• For every fixed 𝜀, we therefore get a polynomial time 
approximation algorithm

• An algorithm that computes an (1 + 𝜀)-approximation for every 
𝜀 > 0 is called an approximation scheme.

• If the running time is polynomial for every fixed 𝜀, we say that 
the algorithm is a polynomial time approximation scheme (PTAS)

• If the running time is also polynomial in 1/𝜀, the algorithm is a 
fully polynomial time approximation scheme (FPTAS)

• Thus, the described alg. is an FPTAS for the knapsack problem


