

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

- OPT ≥ 0 : optimal objective value
 ALG ≥ 0 : objective value achieved by the algorithm
- Approximation Ratio lpha:

```
Minimization: \alpha := \max_{\substack{\text{input instances}}} \frac{ALG}{OPT}

Maximization: \alpha := \min_{\substack{\text{input instances}}} \frac{ALG}{OPT}
```

Metric TSP

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., d(u, v) is dist from u to v
- Distances define a metric on V:

$$d(u,v) = d(v,u) \ge 0,$$
 $d(u,v) = 0 \Leftrightarrow u = v$
 $\forall u, v, w \in V : d(u,v) \le d(u,w) + d(w,v)$

Solution:

- Ordering/permutation $v_1, v_2, ..., v_n$ of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_1, v_n) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

Metric TSP

- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$ -approximation
- Can we get a constant approximation ratio?
- We will see that we can...

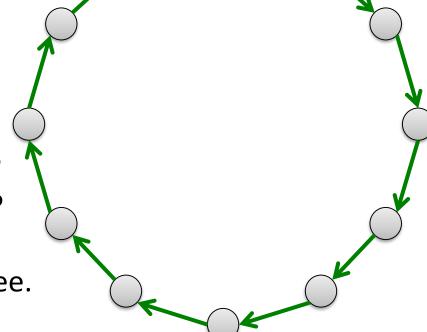
TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the weight of a minimum spanning tree

Proof:

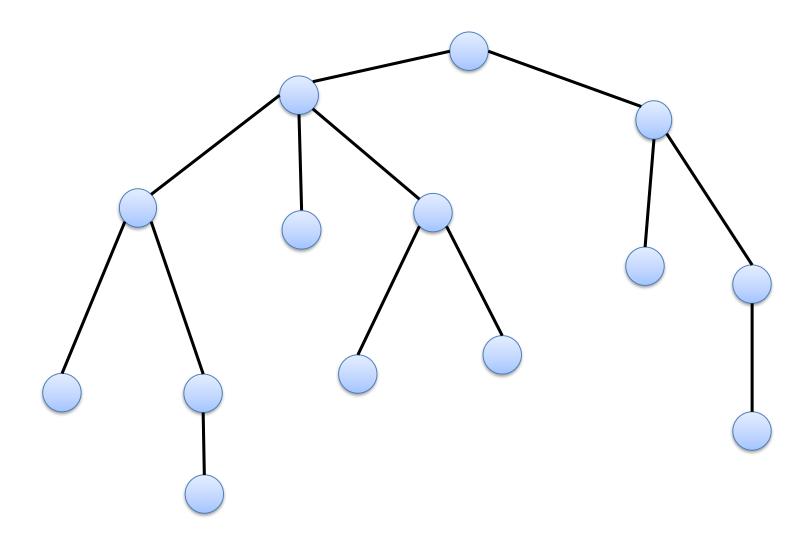
A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.



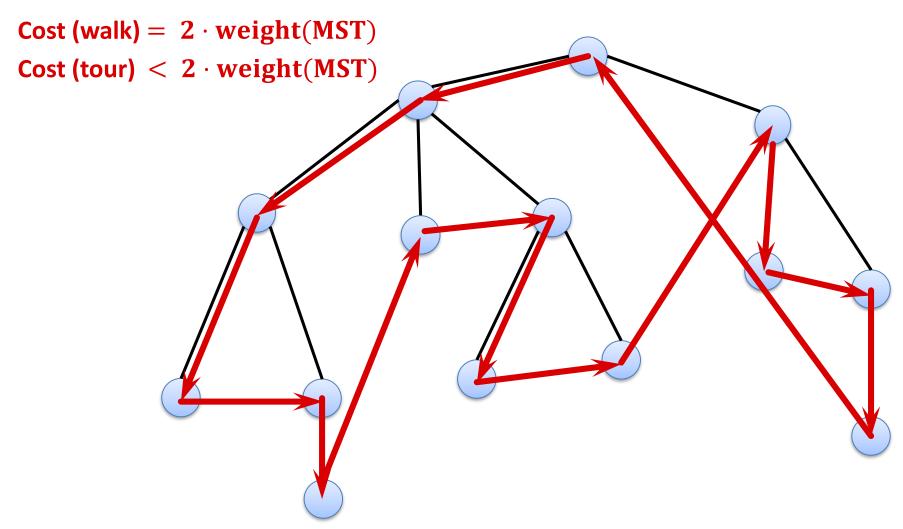
The MST Tour

Walk around the MST...



The MST Tour

Walk around the MST...



Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

Proof:

- Triangle inequality \rightarrow length of tour is at most 2 · weight(MST)
- We have seen that weight(MST) < opt. tour length

Can we do even better?

Metric TSP Subproblems

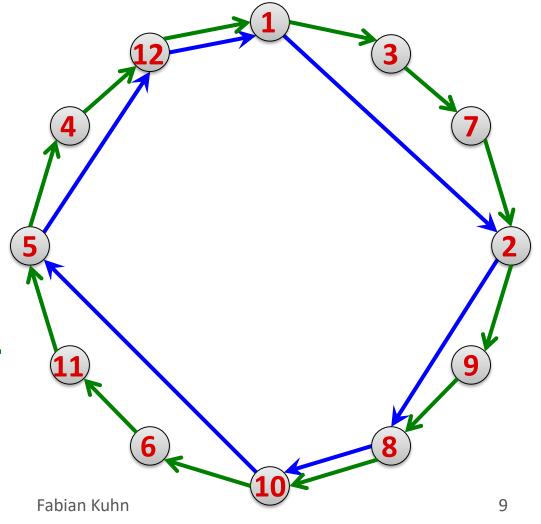
Claim: Given a metric (V, d) and (V', d) for $V' \subseteq V$, the optimal TSP path/tour of (V', d) is at most as large as the optimal TSP

path/tour of (V, d).

Optimal TSP tour of nodes 1, 2, ..., 12

Induced TSP tour for nodes 1, 2, 5, 8, 10, 12

blue tour ≤ green tour



TSP and Matching

- Consider a metric TSP instance (V,d) with an even number of nodes |V|
- Recall that a perfect matching is a matching $M \subseteq V \times V$ such that every node of V is incident to an edge of M.
- Because |V| is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of V into |V|/2 pairs is a perfect matching.
- The weight of a matching *M* is the sum of the distances represented by all edges in *M*:

$$w(M) = \sum_{\{u,v\} \in M} d(u,v)$$

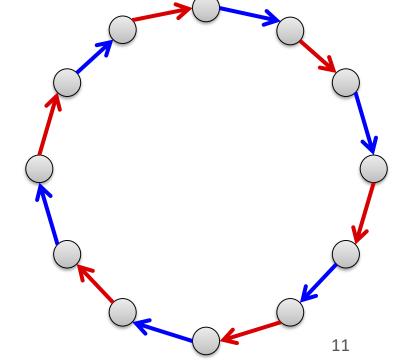
TSP and Matching

Lemma: Assume we are given a TSP instance (V, d) with an even number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of (V, d).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect

matchings



Minimum Weight Perfect Matching

Claim: If |V| is even, a minimum weight perfect matching of (V, d) can be computed in polynomial time

Proof Sketch:

- We have seen that a minimum weight perfect matching in a complete bipartite graph can be computed in polynomial time
- With a more complicated algorithm, also a minimum weight perfect matching in complete (non-bipartite) graphs can be computed in polynomial time
- The algorithm uses similar ideas as the bipartite weighted matching algorithm and it uses the Blossom algorithm as a subroutine

Algorithm Outline

Problem of MST algorithm:

Every edge has to be visited twice

Goal:

 Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour)

Euler Tours:

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

Euler Tour

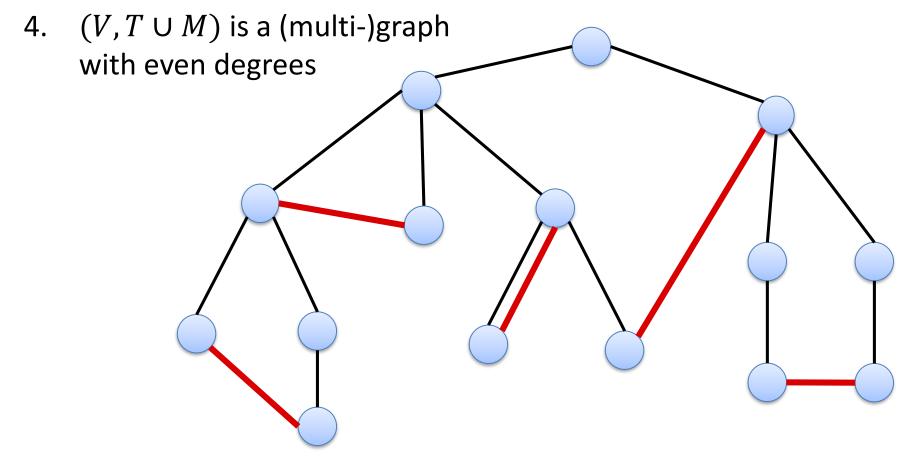
Theorem: A connected (multi-)graph G has an Euler tour if and only if every node of G has even degree.

Proof:

- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:
- 1. Start at some node
- 2. As long as possible, follow an unvisited edge
 - Gives a partial tour, the remaining graph still has even degree
- 3. Solve problem on remaining components recursively
- 4. Merge the obtained tours into one tour that visits all edges

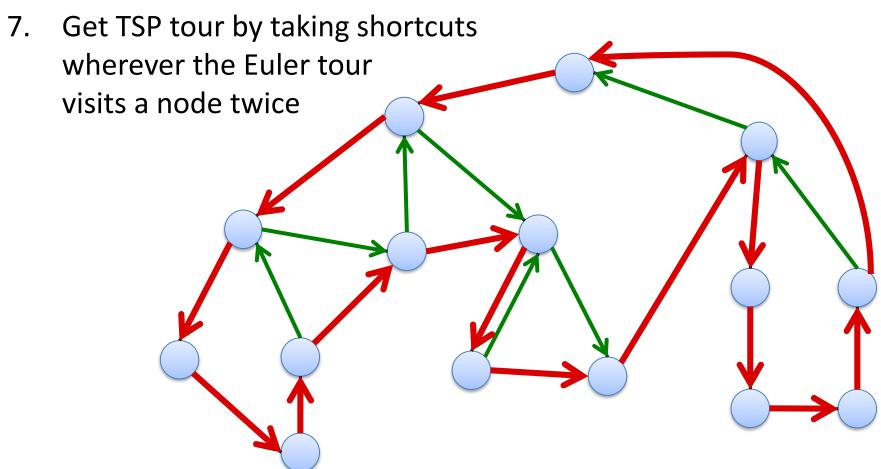
TSP Algorithm

- 1. Compute MST T
- 2. V_{odd} : nodes that have an odd degree in T ($|V_{\text{odd}}|$ is even)
- 3. Compute min weight perfect matching M of (V_{odd}, d)



TSP Algorithm

- 5. Compute Euler tour on $(V, T \cup M)$
- 6. Total length of Euler tour $\leq \frac{3}{2} \cdot TSP_{OPT}$



TSP Algorithm

The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation ratio of at most $\frac{3}{2}$.

Proof:

- The length of the Euler tour is $\leq \frac{3}{2} \cdot \text{TSP}_{\text{OPT}}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

Knapsack

- n items 1, ..., n, each item has weight $w_i > 0$ and value $v_i > 0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most
 W and total value is maximized:

$$\max \sum_{i \in S} v_i$$
 s.t. $S \subseteq \{1, ..., n\}$ and $\sum_{i \in S} w_i \le W$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

Knapsack: Dynamic Programming Alg.

We have shown:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.

Knapsack: Dynamic Programming Alg.

We have shown:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.

Problems:

- If W and V are large, the algorithms are not polynomial in n
- If the values or weights are not integers, things are even worse (and in general, the algorithms cannot even be applied at all)

Idea:

Can we adapt one of the algorithms to at least compute an approximate solution?

- The algorithm has a parameter $\varepsilon > 0$
- We assume that each item alone fits into the knapsack
- We define:

$$V \coloneqq \max_{1 \le i \le n} v_i, \qquad \forall i : \widehat{v}_i \coloneqq \left[\frac{v_i n}{\varepsilon V}\right], \qquad \widehat{V} \coloneqq \max_{1 \le i \le n} \widehat{v}_i$$

- We solve the problem with integer values \hat{v}_i and weights w_i using dynamic programming in time $O(n^2 \cdot \hat{V})$
- If solution value < V, we take item with value V instead

Theorem: The described algorithm runs in time $O(n^3/\varepsilon)$.

Proof:

$$\widehat{V} = \max_{1 \le i \le n} \widehat{v_i} = \max_{1 \le i \le n} \left\lceil \frac{v_i n}{\varepsilon V} \right\rceil = \left\lceil \frac{V n}{\varepsilon V} \right\rceil = \left\lceil \frac{n}{\varepsilon} \right\rceil$$

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$.

Proof:

• Define the set of all feasible solutions (subsets of [n])

$$S \coloneqq \left\{ S \subseteq \{1, \dots, n\} : \sum_{i \in S} w_i \le W \right\}$$

- v(S): value of solution S w.r.t. values $v_1, v_2, ...$ $\hat{v}(S)$: value of solution S w.r.t. values $\hat{v}_1, \hat{v}_2, ...$
- S^* : an optimal solution w.r.t. values $v_1, v_2, ...$ \hat{S} : an optimal solution w.r.t. values $\hat{v}_1, \hat{v}_2, ...$
- Weights are not changed at all, hence, \hat{S} is a feasible solution

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$.

Proof:

We have

$$v(S^*) = \sum_{i \in S^*} v_i = \max_{S \in \mathcal{S}} \sum_{i \in S} v_i,$$

$$\hat{v}(\hat{S}) = \sum_{i \in \hat{S}} \hat{v}_i = \max_{S \in \mathcal{S}} \sum_{S \in \mathcal{S}} \hat{v}_i$$

Because every item fits into the knapsack, we have

$$\forall i \in \{1, \dots, n\}: \ v_i \le V \le \sum_{i \in S^*} v_i$$

• Also:
$$\widehat{v_i} = \left\lceil \frac{v_i n}{\varepsilon V} \right\rceil \implies v_i \leq \frac{\varepsilon V}{n} \cdot \widehat{v_i}$$
, and $\widehat{v_i} \leq \frac{v_i n}{\varepsilon V} + 1$

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$.

Proof:

We have

$$v(S^*) = \sum_{i \in S^*} v_i \le \frac{\varepsilon V}{n} \cdot \sum_{i \in S^*} \widehat{v_i} \le \frac{\varepsilon V}{n} \cdot \sum_{i \in \hat{S}} \widehat{v_i} \le \frac{\varepsilon V}{n} \cdot \sum_{i \in \hat{S}} \left(1 + \frac{v_i n}{\varepsilon V}\right)$$

Therefore

$$v(S^*) = \sum_{i \in S^*} v_i \le \frac{\varepsilon V}{n} \cdot |\hat{S}| + \sum_{i \in \hat{S}} v_i \le \varepsilon V + v(\hat{S})$$

• We have $v(S^*) \ge V$ and therefore

$$(1-\varepsilon)\cdot v(S^*) \leq v(\widehat{S})$$

Approximation Schemes

- For every parameter $\varepsilon > 0$, the knapsack algorithm computes a $(1 + \varepsilon)$ -approximation in time $O(n^3/\varepsilon)$.
- For every fixed ε , we therefore get a polynomial time approximation algorithm
- An algorithm that computes an $(1 + \varepsilon)$ -approximation for every $\varepsilon > 0$ is called an approximation scheme.
- If the running time is polynomial for every fixed ε , we say that the algorithm is a polynomial time approximation scheme (PTAS)
- If the running time is also polynomial in $1/\varepsilon$, the algorithm is a fully polynomial time approximation scheme (FPTAS)
- Thus, the described alg. is an FPTAS for the knapsack problem