
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2018/19

Fabian Kuhn

Algorithm Theory, WS 2018/19 Fabian Kuhn 2

Approximation Ratio

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐢𝐧
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

Algorithm Theory, WS 2018/19 Fabian Kuhn 3

Metric TSP

Input:

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites)

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣) is dist from 𝑢 to 𝑣

• Distances define a metric on 𝑉:
𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢 ≥ 0, 𝑑 𝑢, 𝑣 = 0 ⟺ 𝑢 = 𝑣
∀𝑢, 𝑣, 𝑤 ∈ 𝑉 ∶ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

Solution:

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of the vertices

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣1, 𝑣𝑛 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal:

• Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2018/19 Fabian Kuhn 4

Metric TSP

• The problem is NP-hard

• We have seen that the greedy algorithm (always going to the
nearest unvisited node) gives an 𝑂(log 𝑛)-approximation

• Can we get a constant approximation ratio?

• We will see that we can…

Algorithm Theory, WS 2018/19 Fabian Kuhn 5

TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the
weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it’s length is the weight of the tree

Corollary: Since an optimal TSP
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.

Algorithm Theory, WS 2018/19 Fabian Kuhn 6

The MST Tour

Walk around the MST…

19

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

The MST Tour

Walk around the MST…
Cost (walk) = 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

Cost (tour) < 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

19

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the
metric TSP problem.

Proof:

• Triangle inequality  length of tour is at most 2 ⋅ weight(MST)

• We have seen that weight MST < opt. tour length

Can we do even better?

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

Metric TSP Subproblems

Claim: Given a metric (𝑉, 𝑑) and (𝑉′, 𝑑) for 𝑉′ ⊆ 𝑉, the optimal
TSP path/tour of (𝑉′, 𝑑) is at most as large as the optimal TSP
path/tour of (𝑉, 𝑑).

Optimal TSP tour of
nodes 𝟏, 𝟐,… , 𝟏𝟐

Induced TSP tour for
nodes 𝟏, 𝟐, 𝟓, 𝟖, 𝟏𝟎, 𝟏𝟐

𝐛𝐥𝐮𝐞 𝐭𝐨𝐮𝐫 ≤ 𝐠𝐫𝐞𝐞𝐧 𝐭𝐨𝐮𝐫

1

2

3

4

5

6

7

9

8
10

11

12

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

TSP and Matching

• Consider a metric TSP instance (𝑉, 𝑑) with an even number of
nodes |𝑉|

• Recall that a perfect matching is a matching 𝑀 ⊆ 𝑉 × 𝑉 such
that every node of 𝑉 is incident to an edge of 𝑀.

• Because |𝑉| is even and because in a metric TSP, there is an
edge between any two nodes 𝑢, 𝑣 ∈ 𝑉, any partition of 𝑉 into
𝑉 /2 pairs is a perfect matching.

• The weight of a matching 𝑀 is the sum of the distances
represented by all edges in 𝑀:

𝑤 𝑀 =෍
𝑢,𝑣 ∈𝑀

𝑑(𝑢, 𝑣)

Algorithm Theory, WS 2018/19 Fabian Kuhn 11

TSP and Matching

Lemma: Assume we are given a TSP instance 𝑉, 𝑑 with an even
number of nodes. The length of an optimal TSP tour of (𝑉, 𝑑) is at
least twice the weight of a minimum weight perfect matching of
(𝑉, 𝑑).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect
matchings

Algorithm Theory, WS 2018/19 Fabian Kuhn 12

Minimum Weight Perfect Matching

Claim: If 𝑉 is even, a minimum weight perfect matching of (𝑉, 𝑑)
can be computed in polynomial time

Proof Sketch:

• We have seen that a minimum weight perfect matching in a
complete bipartite graph can be computed in polynomial time

• With a more complicated algorithm, also a minimum weight
perfect matching in complete (non-bipartite) graphs can be
computed in polynomial time

• The algorithm uses similar ideas as the bipartite weighted
matching algorithm and it uses the Blossom algorithm as a
subroutine

Algorithm Theory, WS 2018/19 Fabian Kuhn 13

Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

• Get a graph on which every edge only has to be visited once
(and where still the total edge weight is small compared to an
optimal TSP tour)

Euler Tours:

• A tour that visits each edge of a graph exactly once is called an
Euler tour

• An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

• That’s definitely not true for a tree, but can we modify our
MST suitably?

Algorithm Theory, WS 2018/19 Fabian Kuhn 14

Euler Tour

Theorem: A connected (multi-)graph 𝐺 has an Euler tour if and only
if every node of 𝐺 has even degree.

Proof:

• If 𝐺 has an odd degree node, it clearly cannot have an Euler tour

• If 𝐺 has only even degree nodes, a tour can be found recursively:

1. Start at some node

2. As long as possible, follow
an unvisited edge
– Gives a partial tour, the remaining

graph still has even degree

3. Solve problem on remaining components recursively

4. Merge the obtained tours into one tour that visits all edges

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

TSP Algorithm

1. Compute MST 𝑇

2. 𝑉odd: nodes that have an odd degree in 𝑇 (|𝑉odd| is even)

3. Compute min weight perfect matching 𝑀 of (𝑉odd, 𝑑)

4. (𝑉, 𝑇 ∪ 𝑀) is a (multi-)graph
with even degrees

Algorithm Theory, WS 2018/19 Fabian Kuhn 16

TSP Algorithm

5. Compute Euler tour on (𝑉, 𝑇 ∪ 𝑀)

6. Total length of Euler tour ≤
𝟑

𝟐
⋅ 𝐓𝐒𝐏𝐎𝐏𝐓

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice

Algorithm Theory, WS 2018/19 Fabian Kuhn 17

TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation
ratio of at most Τ3 2.

Proof:

• The length of the Euler tour is ≤ Τ3 2 ⋅ TSPOPT
• Because of the triangle inequality, taking shortcuts can only

make the tour shorter

Algorithm Theory, WS 2018/19 Fabian Kuhn 18

Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 > 0 and value 𝑣𝑖 > 0

• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at most
𝑊 and total value is maximized:

max෍

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊 time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2018/19 Fabian Kuhn 19

Knapsack: Dynamic Programming Alg.

We have shown:

• If all item weights 𝑤𝑖 are integers, using dynamic programming,
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr.
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.

Algorithm Theory, WS 2018/19 Fabian Kuhn 20

Knapsack: Dynamic Programming Alg.

We have shown:

• If all item weights 𝑤𝑖 are integers, using dynamic programming,
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr.
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.

Problems:

• If 𝑊 and 𝑉 are large, the algorithms are not polynomial in 𝑛

• If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

• Can we adapt one of the algorithms to at least compute an
approximate solution?

Algorithm Theory, WS 2018/19 Fabian Kuhn 21

Approximation Algorithm

• The algorithm has a parameter 𝜀 > 0

• We assume that each item alone fits into the knapsack

• We define:

𝑉 ≔ max
1≤𝑖≤𝑛

𝑣𝑖 , ∀𝑖: ෝ𝑣𝑖 ≔
𝑣𝑖𝑛

𝜀𝑉
, ෠𝑉 ≔ max

1≤𝑖≤𝑛
ෝ𝑣𝑖

• We solve the problem with integer values ෝ𝑣𝑖 and weights 𝑤𝑖

using dynamic programming in time 𝑂(𝑛2 ⋅ ෠𝑉)

• If solution value < 𝑉, we take item with value 𝑉 instead

Theorem: The described algorithm runs in time 𝑂 Τ𝑛3 𝜀 .

Proof:

෠𝑉 = max
1≤𝑖≤𝑛

ෝ𝑣𝑖 = max
1≤𝑖≤𝑛

𝑣𝑖𝑛

𝜀𝑉
=

𝑉𝑛

𝜀𝑉
=

𝑛

𝜀

Algorithm Theory, WS 2018/19 Fabian Kuhn 22

Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 − 𝜀.

Proof:

• Define the set of all feasible solutions (subsets of [𝑛])

𝒮 ≔ 𝑆 ⊆ 1,… , 𝑛 ∶ ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• 𝑣 𝑆 : value of solution 𝑆 w.r.t. values 𝑣1, 𝑣2, …
ො𝑣 𝑆 : value of solution 𝑆 w.r.t. values ො𝑣1, ො𝑣2, …

• 𝑆∗: an optimal solution w.r.t. values 𝑣1, 𝑣2, …
መ𝑆 : an optimal solution w.r.t. values ො𝑣1, ො𝑣2, …

• Weights are not changed at all, hence, መ𝑆 is a feasible solution

Algorithm Theory, WS 2018/19 Fabian Kuhn 23

Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 − 𝜀.

Proof:

• We have

𝑣(𝑆∗) = ෍

𝑖∈𝑆∗

𝑣𝑖 = max
𝑆∈𝒮

෍

𝑖∈𝑆

𝑣𝑖 ,

ො𝑣 መ𝑆 =෍

𝑖∈ መ𝑆

ො𝑣𝑖 = max
𝑆∈𝒮

෍

𝑆∈𝒮

ෝ𝑣𝑖

• Because every item fits into the knapsack, we have

∀𝑖 ∈ 1,… , 𝑛 : 𝑣𝑖 ≤ 𝑉 ≤ ෍

𝑗∈𝑆∗

𝑣𝑗

• Also: ෝ𝑣𝑖 =
𝑣𝑖𝑛

𝜀𝑉
⟹ 𝑣𝑖 ≤

𝜀𝑉

𝑛
⋅ ෝ𝑣𝑖, and ෝ𝑣𝑖 ≤

𝑣𝑖𝑛

𝜀𝑉
+ 1

Algorithm Theory, WS 2018/19 Fabian Kuhn 24

Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 − 𝜀.

Proof:

• We have

𝑣 𝑆∗ = ෍

𝑖∈𝑆∗

𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅ ෍

𝑖∈𝑆∗

ෝ𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅෍

𝑖∈ መ𝑆

ෝ𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅෍

𝑖∈ መ𝑆

1 +
𝑣𝑖𝑛

𝜀𝑉

• Therefore

𝑣 𝑆∗ = ෍

𝑖∈𝑆∗

𝑣𝑖 ≤
𝜀𝑉

𝑛
⋅ መ𝑆 +෍

𝑖∈ መ𝑆

𝑣𝑖 ≤ 𝜀𝑉 + 𝑣 መ𝑆

• We have 𝑣 𝑆∗ ≥ 𝑉 and therefore

𝟏 − 𝜺 ⋅ 𝒗 𝑺∗ ≤ 𝒗 ෡𝑺

Algorithm Theory, WS 2018/19 Fabian Kuhn 25

Approximation Schemes

• For every parameter 𝜀 > 0, the knapsack algorithm computes a
(1 + 𝜀)-approximation in time 𝑂(Τ𝑛3 𝜀).

• For every fixed 𝜀, we therefore get a polynomial time
approximation algorithm

• An algorithm that computes an (1 + 𝜀)-approximation for every
𝜀 > 0 is called an approximation scheme.

• If the running time is polynomial for every fixed 𝜀, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

• If the running time is also polynomial in 1/𝜀, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

• Thus, the described alg. is an FPTAS for the knapsack problem

