

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

- OPT ≥ 0 : optimal objective value ALG ≥ 0 : objective value achieved by the algorithm
- Approximation Ratio α :

Minimization: $\alpha \coloneqq \max_{\substack{\text{input instances}}} \frac{ALG}{OPT} \ge 1$ Maximization: $\alpha \coloneqq \min_{\substack{\text{input instances}}} \frac{ALG}{OPT} \le 1$

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \rightarrow \mathbb{R}$, i.e., d(u, v) is dist from u to v
- Distances define a metric on V: $d(u,v) = d(v,u) \ge 0, \qquad d(u,v) = 0 \Leftrightarrow u = v$ $\forall u, v, w \in V : \underline{d(u,v)} \le d(u,w) + d(w,v) \quad \text{frankerineg.}$

Solution:

- Ordering/permutation v_1, v_2, \dots, v_n of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_1, v_n) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

• Minimize length of TSP path or TSP tour

Metric TSP

- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$ -approximation
- Can we get a constant approximation ratio?
- We will see that we can...

TSP and MST

w(MST) < TSP Frank < TSP TOUR

Claim: The length of an optimal TSP path is lower bounded by the weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.

Algorithm Theory, WS 2018/19

Walk around the MST...

The MST Tour weight (MST) < cost (TST*)

Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

Proof:

- Triangle inequality \rightarrow length of tour is at most 2 · weight(MST)
- We have seen that weight(MST) < opt. tour length

Can we do even better?

Metric TSP Subproblems

TSP and Matching

- Consider a metric TSP instance (V, d) with an even number of nodes |V|
- Recall that a <u>perfect matching</u> is a matching $M \subseteq V \times V$ such that every node of V is incident to an edge of M.
- Because |V| is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of V into |V|/2 pairs is a perfect matching.
- The weight of a matching *M* is the sum of the distances represented by all edges in *M*:

$$w(M) = \sum_{\{u,v\}\in M} d(u,v)$$

Algorithm Theory, WS 2018/19

Fabian Kuhn

TSP and Matching

Lemma: Assume we are given a T<u>SP instance</u> (V, d) with an even number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of (V, d).

Proof:

The edges of a TSP tour can be partitioned into 2 perfect matchings

Minimum Weight Perfect Matching

Claim: If |V| is even, a minimum weight perfect matching of (V, d) can be computed in polynomial time

Proof Sketch:

- We have seen that a minimum weight perfect matching in a complete bipartite graph can be computed in polynomial time
- With a more complicated algorithm, also a minimum weight perfect matching in complete (non-bipartite) graphs can be computed in polynomial time
- The algorithm uses similar ideas as the bipartite weighted matching algorithm and it uses the Blossom algorithm as a subroutine

Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

 Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour)

Euler Tours:

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a <u>(multi-)graph</u> exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

Euler Tour

Theorem: A <u>connected</u> (multi-)graph *G* has an Euler tour if and only if every node of *G* has even degree.

Proof:

- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:
- 1. Start at some node
- 2. As long as possible, follow an unvisited edge
 - Gives a <u>partial tour</u>, the remaining graph still has even degree
- 3. Solve problem on remaining components recursively
- 4. Merge the obtained tours into one tour that visits all edges

TSP Algorithm Zdeg (*) = ZIEI

- 1. Compute MST *T*
- 2. V_{odd} : nodes that have an odd degree in T ($|V_{odd}|$ is even)

0

- 3. Compute min weight perfect matching M of (V_{odd}, d)
- 4. $(V, T \cup M)$ is a (multi-)graph with even degrees

TSP Algorithm

- 5. Compute Euler tour on $(V, T \cup M)$
- 6. Total length of Euler tour $\leq \frac{3}{2} \cdot \text{TSP}_{\text{OPT}}$
- Get TSP tour by taking shortcuts wherever the Euler tour visits a node twice

TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation ratio of at most $\frac{3}{2}$.

Proof:

- The length of the Euler tour is $\leq 3/2 \cdot \text{TSP}_{\text{OPT}}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

Knapsack

- *n* items 1, ..., *n*, each item has weight $w_i > 0$ and value $v_i > 0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most
 W and total value is maximized:

$$\max \sum_{i \in S} v_i$$

s.t. $S \subseteq \{1, ..., n\}$ and $\sum_{i \in S} w_i \le W$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

Knapsack: Dynamic Programming Alg.

We have shown:

 If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time <u>O(nW</u>)

items [:]

• If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.

We have shown:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time $O(n\underline{W})$
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2 V)$, where V is the max. value.

idea: round values to integers

Problems:

- If W and V are large, the algorithms are not polynomial in n
- If the values or weights are not integers, things are even worse (and in general, the algorithms cannot even be applied at all)

Idea:

• Can we adapt one of the algorithms to at least compute an approximate solution?

Algorithm Theory, WS 2018/19

FREIBURG

- The algorithm has a parameter $\varepsilon > 0$
- We assume that each item alone fits into the knapsack
- We define:

$$V \coloneqq \max_{1 \le i \le n} v_i, \qquad \forall i : \widehat{v}_i \coloneqq \left[\frac{v_i n}{\varepsilon V}\right], \qquad \widehat{V} \coloneqq \max_{1 \le i \le n} \widehat{v}_i$$

- We solve the problem with integer values \hat{v}_i and weights w_i using dynamic programming in time $O(\underline{n^2 \cdot \hat{V}})$
- If solution value $\langle V$, we take item with value V instead \mathcal{V}

Theorem: The described algorithm runs in time $O(n^3/\varepsilon)$. **Proof:**

$$\widehat{V} = \max_{1 \le i \le n} \widehat{v_i} = \max_{1 \le i \le n} \left[\frac{v_i n}{\varepsilon V} \right] = \left[\frac{V n}{\varepsilon V} \right] = \left[\frac{n}{\varepsilon} \right] \le \left(\frac{n}{\varepsilon} + 1 \right)$$

Fabian Kuhn

$$\frac{ALG}{OPT} \ge 1 - \varepsilon$$

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$. **Proof:**

• Define the set of all feasible solutions (subsets of [n])

$$\mathcal{S} \coloneqq \left\{ S \subseteq \{1, \dots, n\} : \sum_{i \in S} w_i \le W \right\}$$

- $\underline{v(S)}$: value of solution *S* w.r.t. values v_1, v_2, \dots $\underline{\hat{v}(S)}$: value of solution *S* w.r.t. values $\hat{v}_1, \hat{v}_2, \dots$
- S^* : an optimal solution w.r.t. values v_1, v_2, \dots \hat{S} : an optimal solution w.r.t. values $\hat{v}_1, \hat{v}_2, \dots$ $\hat{V}_1, \hat{v}_2, \dots$ \hat{V}_2 solution computed by days. page.
- Weights are not changed at all, hence, \hat{S} is a feasible solution wed to show $v(\hat{S}) \ge (1-\varepsilon)v(S^*)$

Algorithm Theory, WS 2018/19

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at least $1 - \varepsilon$. **Proof:**

• We have

$$\frac{v(S^*)}{\hat{v}(\hat{S})} = \sum_{i \in \hat{S}^*} v_i = \max_{S \in \hat{S}} \sum_{i \in S} v_i,$$

$$\frac{\hat{v}(\hat{S})}{\hat{v}(\hat{S})} = \sum_{i \in \hat{S}} \hat{v}_i = \max_{S \in \hat{S}} \sum_{S \in \hat{S}} \hat{v}_i \qquad \text{max } v_i \leq W$$

• Because every item fits into the knapsack, we have

$$\widehat{\mathbf{v}_{i}} \ge \frac{\mathbf{v}_{i}}{\varepsilon \mathbf{v}} \qquad \qquad \forall i \in \{1, \dots, n\}: \ \underline{v_{i}} \le V \le \sum_{j \in S^{*}} v_{j}$$

$$\bullet \text{ Also: } \widehat{v_{i}} = \left[\frac{v_{i}n}{\varepsilon V}\right] \implies v_{i} \le \frac{\varepsilon V}{n} \cdot \widehat{v_{i}}, \text{ and } \widehat{v_{i}} \le \frac{v_{i}n}{\varepsilon V} + 1$$

Algorithm Theory, WS 2018/19

Theorem: The approximation algorithm computes a feasible because S is opt. w.r.t. Vi solution with approximation ratio at least $1 - \varepsilon$. **Proof:**

We have

$$\underbrace{v(S^*)}_{\underline{i\in S^*}} = \underbrace{\sum_{\underline{i\in S^*}} v_i}_{\underline{i\in S^*}} \leq \frac{\varepsilon V}{n} \cdot \sum_{\underline{i\in S^*}} \widehat{v_i} \leq \frac{\varepsilon V}{n} \cdot \sum_{\underline{i\in \hat{S}}} \widehat{v_i} \leq \frac{\varepsilon V}{n} \cdot \sum_{\underline{i\in \hat{S}}} \left(\underbrace{1 + \frac{v_i n}{\varepsilon V}}_{\underline{i\in \hat{S}}}\right)$$

Therefore

We

$$v(S^*) = \sum_{i \in S^*} v_i \le \frac{\varepsilon V}{n} \cdot |\hat{S}| + \sum_{i \in \hat{S}} v_i \le \frac{\varepsilon V}{2} + \frac{v(\hat{S})}{\sqrt{(S^*)}}$$

have $v(S^*) \ge V$ and therefore $\leq v(\hat{S}) + \varepsilon v(\hat{S}) + \varepsilon v(\hat{S})$
 $(1 - \varepsilon) \cdot v(S^*) \le v(\hat{S})$

マー

Approximation Schemes

- For every parameter $\varepsilon > 0$, the knapsack algorithm computes a $(1 \neq \varepsilon)$ -approximation in time $O(n^3/\varepsilon)$.
- For every fixed ε, we therefore get a polynomial time approximation algorithm
- An algorithm that computes an $(1 + \varepsilon)$ -approximation for every $\varepsilon > 0$ is called an approximation scheme.
- If the running time is polynomial for every fixed ε, we say that the algorithm is a polynomial time approximation scheme (PTAS)
- If the running time is also polynomial in $1/\varepsilon$, the algorithm is a fully polynomial time approximation scheme (FPTAS)
- Thus, the described alg. is an FPTAS for the knapsack problem