Chapter 9
Online Algorithms

Algorithm Theory
WS 2018/19

Fabian Kuhn

UNI

FREIBURG

Online Computations

UNI
f

FREIBURG

* Sometimes, an algorithm has to start processing the input
before the complete input is known

* For example, when storing data in a data structure, the
sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output
step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole
input before computing the output.

 Some problems are inherently online

— Especially when real-time requests have to be processed over a
significant period of time

Algorithm Theory, WS 2018/19 Fabian Kuhn 2

Competitive Ratio

UNI
FREIBURG

* Let’s again consider optimization problems

— For simplicity, assume, we have a minimization problem

Optimal offline solution OPT (I):

* Best objective value that an offline algorithm can achieve for a
given input sequence [

Online solution ALG(I):
e Objective value achieved by an online algorithm ALG on [

Competitive Ratio: An algorithm has competitive ratioc = 1 if
ALG(I) < c-OPT() + «a.

 Ifa = 0, we say that ALG is strictly c-competitive.

Algorithm Theory, WS 2018/19 Fabian Kuhn 3

Paging Algorithm

UNI
FREIBURG

Assume a simple memory hierarchy:

fast memory of size k

coe slow memory

If a memory page has to be accessed:

Page in fast memory (hit): take page from there
Page not in fast memory (miss): leads to a page fault

Page fault: the page is loaded into the fast memory and some
page has to be evicted from the fast memory

Paging algorithm: decides which page to evict
Classical online problem: we don’t know the future accesses

Algorithm Theory, WS 2018/19 Fabian Kuhn 4

Paging Strategies

UNI
f

FREIBURG

Least Recently Used (LRU):
* Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):
* Replace the page that has been in the fast memory longest

Last In First Out (LIFO):
* Replace the page most recently moved to fast memory

Least Frequently Used (LFU):
 Replace the page that has been used the least

Longest Forward Distance (LFD):
* Replace the page whose next request is latest (in the future)
 LFDis not an online strategy!

Algorithm Theory, WS 2018/19 Fabian Kuhn 5

UNI

LFD is Optimal

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
* For contradiction, assume that LFD is not optimal

* Then there exists a finite input sequence o on which LFD is not
optimal (assume that the length of g is |o| = n)

* Let OPT be an optimal solution for o such that
— OPT processes requests 1, ..., i in exactly the same way as LFD
— OPT processes request i + 1 differently than LFD

— Any other optimal strategy processes one of the first i + 1 requests
differently than LFD

* Hence, OPT is the optimal solution that behaves in the same way
as LFD for as long as possible 2 we havei < n

e Goal: Construct OPT' that is identical with LFD forreq. 1, ...,i + 1

Algorithm Theory, WS 2018/19 Fabian Kuhn 6

UNI

LFD is Optimal

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 1: Request i + 1 does not lead to a page fault

* LFD does not change the content of the fast memory

* OPT behaves differently than LFD
— OPT replaces some page in the fast memory

— Asup torequesti + 1, both algorithms behave in the same way, they also
have the same fast memory content

— OPT therefore does not require the new page for requesti + 1

— Hence, OPT can also load that page later (without extra cost) 2 OPT’

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

UNI

LFD is Optimal

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

 LFD and OPT move the same page into the fast memory, but they
evict different pages

— |f OPT loads more than one page, all pages that are not required for
request i + 1 can also be loaded later

* Say, LFD evicts page p and OPT evicts page p’

By the definition of LFD, p’ is required again before page p

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

i+1 ' < £:0OPTevictsp j':nextreq.forp’ j:nextreq.forp
I I I I I >
LFD evicts p £ < j': OPT loads p’ (for first time after i + 1)

OPT evicts p’

a) OPT keeps p in fast memory until request

— Evictp atrequest i + 1, keep p' instead and load p (instead of p’) back
into the fast memory at request ¢

b) OPT evicts p at request £’ < ¥
— Evictp atrequesti + 1 and p’ at request €’ (switch evictions of p and p’)

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

