

Chapter 9 Online Algorithms

Algorithm Theory WS 2018/19

Fabian Kuhn

- Let's again consider optimization problems
 - For simplicity, assume, we have a minimization problem

Optimal offline solution OPT(I):

 Best objective value that an offline algorithm can achieve for a given input sequence I

Online solution ALG(I):

Objective value achieved by an online algorithm ALG on I

Competitive Ratio: An algorithm has competitive ratio $c \ge 1$ if $ALG(I) \le c \cdot OPT(I) + \alpha$.

• If $\alpha = 0$, we say that ALG is strictly *c*-competitive.

Paging Algorithm

Assume a simple memory hierarchy:

If a memory page has to be accessed:

- Page in fast memory (hit): take page from there
- Page not in fast memory (miss): leads to a page fault
- Page fault: the page is loaded into the fast memory and some page has to be evicted from the fast memory
- Paging algorithm: decides which page to evict
- Classical online problem: we don't know the future accesses

Paging Strategies

Least Recently Used (LRU):

Replace the page that hasn't been used for the longest time

First In First Out (FIFO):

Replace the page that has been in the fast memory longest

Last In First Out (LIFO):

Replace the page most recently moved to fast memory

Least Frequently Used (LFU):

Replace the page that has been used the least

Longest Forward Distance (LFD):

- Replace the page whose next request is latest (in the future)
- LFD is **not** an online strategy!

Phase Partition

We partition a given request sequence σ into phases as follows:

- Phase 0: empty sequence
- Phase i: maximal sequence that immediately follows phase i-1 and contains at most k distinct page requests

Example sequence (k = 4):

2, 5, 12, 5, 4, 2, 10, 8, 3, 6, 2, 2, 6, 6, 8, 3, 2, 6, 9, 10, 6, 3, 10, 2, 1, 3, 5

Phase *i* **Interval**: interval starting with the second request of phase i and ending with the first request of phase i+1

• If the last phase is phase p, phase i interval is defined for i = 1, ..., p - 1

Optimal Algorithm

Lemma: Algorithm LFD has at least one page fault in each phase i interval (for i = 1, ..., p - 1, where p is the number of phases).

- q is in fast memory after first request of phase i
- Number of distinct requests in phase i: k
- By maximality of phase i: q' does not occur in phase i
- Number of distinct requests $\neq q$ in phase interval i: k
 - → at least one page fault

LRU and FIFO Algorithms

Lemma: Algorithm LFD has at least one page fault in each phase i interval (for i = 1, ..., p - 1, where p is the number of phases).

Corollary: The number of page faults of an optimal offline algorithm is at least p-1, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most k.

Proof:

- We will show that both have at most k page faults per phase
- We then have (for every input *I*):

$$LRU(I)$$
, $FIFO(I) \le k \cdot p \le k \cdot OPT(I) + k$

LRU and FIFO Algorithms

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most k.

Proof:

- Need to show that both have at most k page faults per phase
- LRU:
 - The k last pages used are the k least recently used
 - Throughout a phase i, the k distinct pages of phase i are the l.r.u.
 - Once in the fast memory, these pages are therefore not evicted until the end of the phase

FIFO:

- In each page fault in phase i, one of the k pages of phase i is loaded into fast memory
- Once a page is loaded in a page fault of phase i it belongs to the least k pages loaded into fast memory throughout the rest of the phase
- Hence: Each of the k pages leads to ≤ 1 page fault in phase i

Lower Bound

Theorem: Even if the slow memory contains only k+1 pages, any deterministic algorithm has competitive ratio at least k.

Proof:

- Consider some given deterministic algorithm ALG
- Because ALG is deterministic, the content of the fast memory after the first i requests is determined by the first i requests.
- Construct a request sequence inductively as follows:
 - Assume some initial slow memory content
 - The $(i + 1)^{st}$ request is for the page which is not in fast memory after the first i requests (throughout we only use k + 1 different pages)
- There is a page fault for every request
- OPT has a page fault at most every k requests
 - There is always a page that is not required for the next k-1 requests

Randomized Algorithms

- We have seen that deterministic paging algorithms cannot be better than k-competitive
- Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has competitive ratio $c \ge 1$ if for all inputs I,

$$\mathbb{E}[ALG(I)] \leq c \cdot OPT(I) + \alpha.$$

• If $\alpha \leq 0$, we say that ALG is strictly *c*-competitive.

Adversaries

 For randomized algorithm, we need to distinguish between different kinds of adversaries (providing the input)

Oblivious Adversary:

- Has to determine the complete input sequence before the algorithm starts
 - The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

- The input sequence is constructed during the execution
- When determining the next input, the adversary knows how the algorithm reacted to the previous inputs
- Input sequence depends on the random behavior of the alg.
- Sometimes, two adaptive adversaries are distinguished
 - offline, online : different way of measuring the adversary cost

Lower Bound

The adversaries can be ordered according to their strength

oblivious < online adaptive < offline adaptive

- An algorithm that achieves a given comp. ratio with an adaptive adversary is at least as good with an oblivious one
- A lower bound that holds against an oblivious adversary also holds for the two adaptive adversaries

• ...

Theorem: No randomized paging algorithm can be better than k-competitive against an adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

Are there better algorithms with an oblivious adversary?

The Randomized Marking Algorithm

- Every entry in fast memory has a marked flag
- Initially, all entries are unmarked.
- If a page in fast memory is accessed, it gets marked
- When a page fault occurs:
 - If all k pages in fast memory are marked,
 all marked bits are set to 0
 - The page to be evicted is chosen uniformly at random among the unmarked pages
 - The marked bit of the new page in fast memory is set to 1

Example

Input Sequence (k=6):

Fast Memory:

Observations:

- At the end of a phase, the fast memory entries are exactly the k pages of that phase
- At the beginning of a phase, all entries get unmarked
- #page faults depends on #new pages in a phase

Page Faults per Phase

Consider a fixed phase i:

- Assume that of the k pages of phase i, m_i are new and $k-m_i$ are old (i.e., they already appear in phase i-1)
- All m_i new pages lead to page faults (when they are requested for the first time)
- When requested for the first time, an old page leads to a page fault, if the page was evicted in one of the previous page faults

We need to count the number of page faults for old pages

Page Faults per Phase

Phase i, jth old page that is requested (for the first time):

- There is a page fault if the page has been evicted
- There have been at most $m_i + j 1$ distinct requests before
- The old places of the j-1 first old pages are occupied
- The other $\leq m_i$ pages are at uniformly random places among the remaining k-(j-1) places (oblivious adv.)
- Probability that the old place of the j^{th} old page is taken:

$$\leq \frac{m_i}{k - (j - 1)}$$

Page Faults per Phase

Phase i > 1, j^{th} old page that is requested (for the first time):

Probability that there is a page fault:

$$\leq \frac{m_i}{k - (j - 1)}$$

Number of page faults for old pages in phase $i: F_i$

$$\mathbb{E}[F_i] = \sum_{j=1}^{k-m_i} \mathbb{P}(j^{\text{th}} \text{ old page incurs page fault})$$

$$\leq \sum_{j=1}^{k-m_i} \frac{m_i}{k - (j-1)} = m_i \cdot \sum_{\ell=m_i+1}^{k} \frac{1}{\ell}$$

$$= m_i \cdot (H(k) - H(m_i)) \leq m_i \cdot (H(k) - 1)$$

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2 \ln(k) + 2$.

Proof:

- Assume that there are p phases
- #page faults of rand. marking algorithm in phase $i: F_i + m_i$
- We have seen that

$$\mathbb{E}[F_i] \le m_i \cdot (H(k) - 1) \le m_i \cdot \ln(k)$$

Let F be the total number of page faults of the algorithm:

$$\mathbb{E}[F] \leq \sum_{i=1}^{p} (\mathbb{E}[F_i] + m_i) \leq H(k) \cdot \sum_{i=1}^{p} m_i$$

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2 \ln(k) + 2$.

Proof:

- Let F_i^* be the number of page faults in phase i in an opt. exec.
- Phase 1: m_1 pages have to be replaced $\rightarrow F_1^* \ge m_1$
- Phase i > 1:
 - Number of distinct page requests in phases i-1 and $i:k+m_i$
 - Therefore, $F_{i-1}^* + F_i^* \ge m_i$
- Total number of page requests F*:

$$F^* = \sum_{i=1}^p F_i^* \ge \frac{1}{2} \cdot \left(F_1^* + \sum_{i=2}^p (F_{i-1}^* + F_i^*) \right) \ge \frac{1}{2} \cdot \sum_{i=1}^p m_i$$

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2 \ln(k) + 2$.

Proof:

Randomized marking algorithm:

$$\mathbb{E}[F] \le H(k) \cdot \sum_{i=1}^{p} m_i$$

Optimal algorithm:

$$F^* \ge \frac{1}{2} \cdot \sum_{i=1}^{p} m_i$$

Remark: It can be shown that no randomized algorithm has a competitive ratio better than H(k) (against an obl. adversary)