

Chapter 9 Online Algorithms

Algorithm Theory WS 2018/19

- Let's again consider optimization problems
 - For simplicity, assume, we have a minimization problem

Optimal offline solution OPT(I):

Best objective value that an offline algorithm can achieve for a given input sequence I

Online solution ALG(*I*):

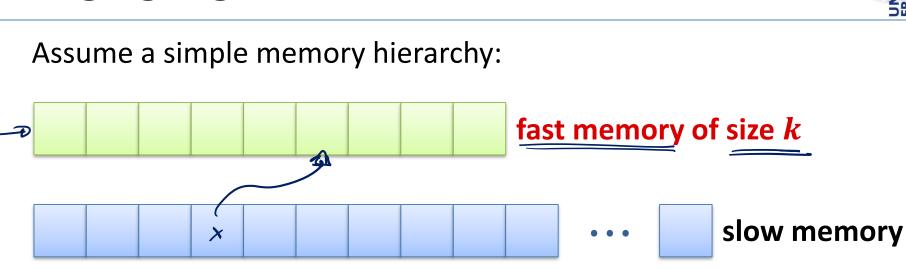
• Objective value achieved by an online algorithm ALG on *I*

Competitive Ratio: An algorithm has competitive ratio $c \ge 1$ if

$$\underbrace{\operatorname{ALG}(I)}_{=} \leq \underbrace{c}_{\uparrow} \cdot \underbrace{\operatorname{OPT}(I)}_{=} + \underbrace{\alpha}_{=}$$

• If $\alpha = 0$, we say that ALG is strictly *c*-competitive.

Paging Algorithm



If a memory page has to be accessed:

- Page in fast memory (hit): take page from there
- Page not in fast memory (miss): leads to a page fault
- Page fault: the page is loaded into the fast memory and some page has to be evicted from the fast memory
- Paging algorithm: decides which page to evict
- Classical online problem: we don't know the future accesses

Least Recently Used (LRU):

• Replace the page that hasn't been used for the longest time

First In First Out (FIFO):

• Replace the page that has been in the fast memory longest

Last In First Out (LIFO):

• Replace the page most recently moved to fast memory

Least Frequently Used (LFU):

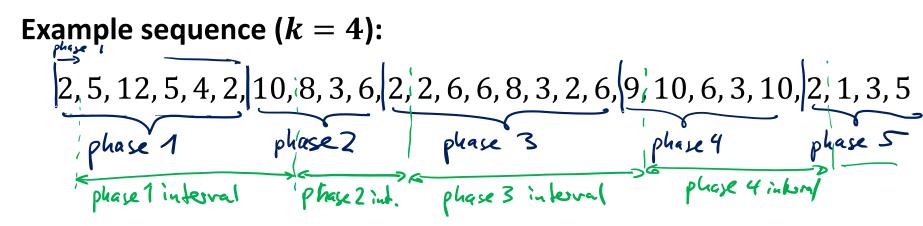
• Replace the page that has been used the least

Longest Forward Distance (LFD):

- Replace the page whose next request is latest (in the future)
- LFD is **not** an online strategy!

We partition a given request sequence σ into phases as follows:

- Phase 0: empty sequence
- Phase i: maximal sequence that immediately follows phase i 1 and contains at most k distinct page requests

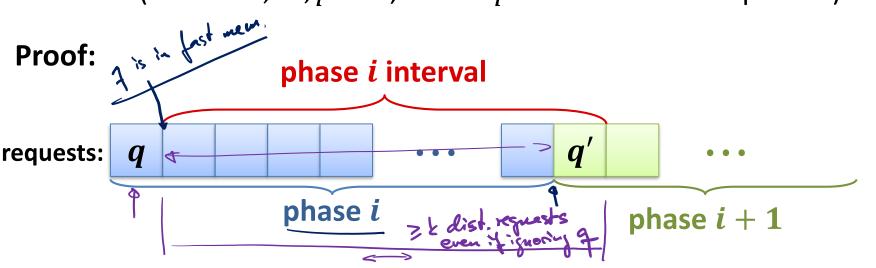


Phase *i* **Interval:** interval starting with the second request of phase *i* and ending with the first request of phase i + 1

• If the last phase is phase p, phase i interval is defined for i = 1, ..., p - 1

Optimal Algorithm

Lemma: Algorithm LFD has at least one page fault in each phase *i* interval (for i = 1, ..., p - 1, where *p* is the number of phases).



- *q* is in fast memory after first request of phase *i*
- Number of distinct requests in phase *i*: *k*
- By maximality of phase i: q' does not occur in phase i
- Number of distinct requests $\neq q$ in phase interval i: k

> at least one page fault per phase inkom!

LRU and FIFO Algorithms

Lemma: Algorithm LFD has at least one page fault in each phase *i* interval (for i = 1, ..., p - 1, where *p* is the number of phases).

Corollary: The number of page faults of an optimal offline algorithm is at least p - 1, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most k.

Proof:

- We will show that both have at most k page faults per phase
- We then have (for every input I): $k \cdot p = k(p i) + k$

 $LRU(I), FIFO(I) \le k \cdot p \le k \cdot OPT(I) + k$

LRU and FIFO Algorithms

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most *k*.

Proof:

- Need to show that both have at most k page faults per phase
- LRU:
 - The k last pages used are the k least recently used

- Throughout a phase i, the k distinct pages of phase i are the l.r.u.
- Once in the fast memory, these pages are therefore not evicted until the end of the phase
- FIFO:
 - In each page fault in phase *i*, one of the *k* pages of phase *i* is loaded into fast memory
 - Once a page is loaded in a page fault of phase *i* it belongs to the least *k* pages loaded into fast memory throughout the rest of the phase
 - Hence: Each of the k pages leads to ≤ 1 page fault in phase i

Algorithm Theory, WS 2018/19

Lower Bound

Theorem: Even if the slow memory contains only k + 1 pages, any deterministic algorithm has competitive ratio at least k.

Proof:

- Consider some given deterministic algorithm ALG
- Because ALG is deterministic, the content of the fast memory after the first *i* requests is determined by the first *i* requests.
- Construct a request sequence inductively as follows:
 - Assume some initial slow memory content
 - The $(i + 1)^{st}$ request is for the page which is not in fast memory after the first *i* requests (throughout we only use k + 1 different pages)
- There is a page fault for every request
- OPT has a page fault at most every k requests
 - There is always a page that is not required for the next k 1 requests

914

Randomized Algorithms

- We have seen that deterministic paging algorithms cannot be better than *k*-competitive
- Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has competitive ratio $c \ge 1$ if for all inputs I, $\mathbb{E}[ALG(I)] \le c \cdot OPT(I) + \alpha.$

• If $\alpha \leq 0$, we say that ALG is strictly *c*-competitive.

Adversaries

• For randomized algorithm, we need to distinguish between different kinds of adversaries (providing the input)

Oblivious Adversary:

- Has to determine the complete input sequence before the algorithm starts
 - The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

- The input sequence is constructed during the execution
- When determining the next input, the adversary knows how the algorithm reacted to the previous inputs
- Input sequence depends on the random behavior of the alg.
- Sometimes, two adaptive adversaries are distinguished
 - offline, online : different way of measuring the adversary cost

Algorithm Theory, WS 2018/19

Lower Bound

The adversaries can be ordered according to their strength

oblivious < online adaptive < offline adaptive

- An algorithm that achieves a given comp. ratio with an adaptive adversary is at least as good with an oblivious one
- A lower bound that holds against an oblivious adversary also holds for the two adaptive adversaries

Theorem: No randomized paging algorithm can be better than <u>k</u>-competitive against an adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

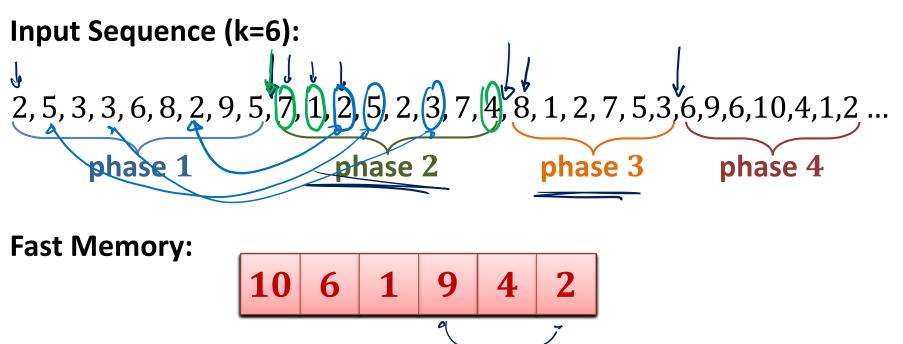
Are there better algorithms with an oblivious adversary?

Algorithm Theory, WS 2018/19

The Randomized Marking Algorithm

- Every entry in fast memory has a marked flag <---
- Initially, all entries are unmarked.
- If a page in fast memory is accessed, it gets marked
- When a page fault occurs:
 - If all <u>k pages</u> in fast memory are marked, all marked bits are set to 0
 - The page to be evicted is chosen uniformly at random among the unmarked pages
 - The marked bit of the new page in fast memory is set to 1 /

Example



Observations:

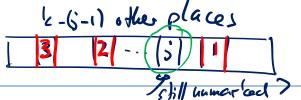
- At the end of a phase, the fast memory entries are exactly the k pages of that phase
- At the beginning of a phase, all entries get unmarked
- #page faults depends on #new pages in a phase

Consider a fixed phase *i*:

- Assume that of the k pages of phase i, m_i are new and $k m_i$ are old (i.e., they already appear in phase i 1)
- All m_i new pages lead to page faults (when they are requested for the first time)
- When requested for the first time, an old page leads to a page fault, if the page was evicted in one of the previous page faults

• We need to count the number of page faults for old pages

Page Faults per Phase



Phase i, j^{th} old page that is requested (for the first time):

- There is a page fault if the page has been evicted
- There have been at most $\underline{m_i} + \underline{j} 1$ distinct requests before
- The old places of the j 1 first old pages are occupied
- The other ≤ m_i pages are at uniformly random places among the remaining k − (j − 1) places (oblivious adv.)
- Probability that the old place of the <u>j</u>th old page is taken:

$$\leq \frac{m_i}{k - (j - 1)}$$

Page Faults per Phase
$$\overline{T}_{i,j} = \begin{cases} i & i \\ 0 & otherwise \end{cases}$$

Phase $i > 1, j^{\text{th}}$ old page that is requested (for the first time):
• Probability that there is a page fault: $\overline{T}_{i} = \sum_{j=1}^{k-m_i} \overline{T}_{i,j}$:# page faults for old page $\frac{m_i}{k-(i-1)}$

Number of page faults for old pages in phase $i: F_i$

 $\mathbb{E}[F_i] = \sum_{j=1}^{k-m_i} \mathbb{P}(j^{\text{th}} \text{ old page incurs page fault})$ $\leq \sum_{j=1}^{k-m_i} \frac{m_i}{k - (j-1)} = \underline{m}_i \cdot \sum_{\ell=m_i+1}^k \frac{1}{\ell}$ $= m_i \cdot \left(\underline{H(k) - H(m_i)}\right) \leq m_i \cdot \left(\underline{H(k) - 1}\right)$ $= \prod_{i=1}^{k-1} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}$

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2\ln(k) + 2$.

Proof:

- Assume that there are *p* phases
- #page faults of rand. marking algorithm in phase $i: F_i + m_i$
- We have seen that $\mathbb{E}[F_i] \le m_i \cdot (H(k) 1) \le m_i \cdot \ln(k)$
- Let *F* be the total number of page faults of the algorithm: $\mathbb{E}[F] \leq \sum_{i=1}^{p} (\mathbb{E}[F_i] + \underline{m}_i) \leq \underline{H(k)} \cdot \sum_{i=1}^{p} \underline{m}_i$ $\leq \mathbb{W}_i(\mathbb{H}(k) - 1)$

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2\ln(k) + 2$.

Proof:



- Let F_i^* be the number of page faults in phase *i* in an opt. exec.
- Phase 1: m_1 pages have to be replaced $\rightarrow F_1^* \ge \underline{m_1}$
- Phase i > 1:
 - Number of distinct page requests in phases i 1 and $i: k + m_i$
 - Therefore, $F_{i-1}^* + F_i^* \ge m_i$
- Total number of page requests F^* : $\overline{T}_i^* + \overline{T}_2^* + \overline{T}_3^* + \dots = \overline{T}_i^* + \overline{T}_2^* + 2 \overset{P^-I}{\leq T_1^*}$

$$F^* = \sum_{i=1}^{p} F_i^* \ge \frac{1}{2} \cdot \left(F_1^* + \sum_{i=2}^{p} (F_{i-1}^* + F_i^*) \right) \ge \frac{1}{2} \cdot \sum_{i=1}^{p} m_i$$

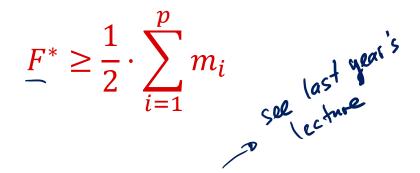
Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2\ln(k) + 2$.

Proof:

• Randomized marking algorithm:

$$\mathbb{E}[F] \le H(k) \cdot \sum_{i=1}^{p} m_i$$

• Optimal algorithm:



Remark: It can be shown that <u>no randomized</u> algorithm has a competitive ratio better than H(k) (against an obl. adversary)

Algorithm Theory, WS 2018/19