Chapter 10
Parallel Algorithms

Algorithm Theory
WS 2018/19

Fabian Kuhn

UNI

FREIBURG

Parallel Computations

UNI

FREIBURG

Sequential Computation:
e Sequence of operations .

(=

Parallel Computation:

Directed Acyclic Graph (DAG)

Algorithm Theory, WS 2018/19 Fabian Kuhn

N

Parallel Computations - # pracsss

UNI

FREIBURG

T ,: time to perform comp. with p procs

—

* T,:work (total # operations)

~— Time when doing the
computation sequentially

depth

* Ty: critical path / span

oo ¢
— Time when parallelizing as
much as possible

e Lower Bounds:

Algorithm Theory, WS 2018/19 Fabian Kuhn

Parallel Computations

UNI
f

FREIBURG

T ,: time to perform comp. with p procs

* Lower Bounds:

T, Q
sz_; TpZToo Z

T / —~
e Parallelism: L S

o0

— maximum possible speed-u

* Linear Speed-up:

T
L _ g(p) «——sely M

Ty == el ol

Algorithm Theory, WS 2018/19 Fabian Kuhn 4

Scheduling

UNI

FREIBURG

 How to assign operations to processors?

* Generally an online problem

— When scheduling some jobs/operations, we do not know how the
computation evolves over time

Greedy (offline) scheduling:

* Order jobs/operations as they would be scheduled optimally
with oo processors (topological sort of DAG)

— Easy to determine: With oo processors, one always schedules all
jobs/ops that can be scheduled

* Always schedule as many jobs/ops as possible
* Schedule jobs/ops in the same order as with co processors

— i.e., jobs that become available earlier have priority

Algorithm Theory, WS 2018/19 Fabian Kuhn

Brent’s Theorem

UNI
f

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
* Greedy scheduling achieves this...
* #operations scheduled with oo processors in round i: x;

:‘>§ /-\/T/_z%c;/, 1=2

Algorithm Theory, WS 2018/19 Fabian Kuhn 6

Brent’s Theorem

UNI

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
* Greedy scheduling achieves this...
* #operations scheduled with o processors in round i: x;

’E ?wcs ‘t -l-? ~+» .wludu(q k; oQoaJ\&us

t] l (P_' - y l '
lFlSers T 50
T Too Too Teo -T:"Tao _
o s 24 < .2? vl I Z T .
(=1 (-) L.r—-
Lol T, U
@ 'g

Algorithm Theory, WS 2018/19 Fabian Kuhn 7

Brent’s Theorem

UNI

Brent’s Theorem: On p processors, a parallel computation can be

performed in time
T{—T,
< +T.

T
P p

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Lower oowwds
o T T y Zp-l __ —
. T Py f F
Tz = ~— — v
[t <T <

Corollary: As long as the number of processors p = O(T, /Tw), it is
possible to achieve a linear speed-up. = —

Algorithm Theory, WS 2018/19 Fabian Kuhn 8

FREIBURG

UNI

PRAM

FREIBURG

 Parallel version of RAM model
=
* p processors, shared random access memory

k

* Basic operations / access to shared memory cost 1

* Processor operations are synchronized

* Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory, WS 2018/19 Fabian Kuhn 9

PRAM

UNI
f

FREIBURG

The Classic Computational Model to Study Parallel Computations:
e The PRAM model comes in variants...

: : \
EREW (exclusive read, exclusive write): /\«\

~

* Concurrent memory access by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

 Reading the same memory cell concurrently is OK

* Two concurrent writes to the same cell lead to unspecified
behavior Couc, Tealk +Mr~J-Q

* This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2018/19 Fabian Kuhn 10

PRAM

UNI
FREIBURG

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
— Weak CRCW: concurrent write only OK if all processors write 0 _
— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values
— Priority CRCW: value of processor with highest ID is written)
— Strong CRCW: largest (or smallest) value is written

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2018/19 Fabian Kuhn 11

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(t logp) using P processors on an EREW machine.

2eonEach patallel)wiap nahe‘gR@WrMaéhm@@aﬁ‘b%ssfmtﬂ-ated by
cal U0gRLsIEP7 0 w@ REY lriaching)

‘ 3

s " w4
w8 @RREZRDDE

N/ \ / C{ ig{

@ 2

L
Ny

Algorithm Theory, WS 2018/19 Fabian Kuhn 12

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Algorithm Theory, WS 2018/19 Fabian Kuhn 13

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Theorem: A parallel computation that can be performed in time ¢,
using p probabilistic processors on a strong CRCW machine, can also
be performed in expected time O(t logp) using O(p/logp)
processors on an arbitrary-winner CRCW machine.

e The same simulation turns out more efficient in this case

Algorithm Theory, WS 2018/19 Fabian Kuhn 14

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O (p?) processors on a weak CRCW machine

— S

Proof:

* Strong: largest value wins, weak: only concurrently writing 0 is OK
s‘mm(aie ‘ Sll’f '4 %wa CRCW AN yu o wead CRCW PRAN
PR%es 91%1«? cecw : I,..,7
V- .- v s 7 N °
weal CQdQ/a.M.J—w“(: 4215 X.N ew.w??a}r (\,))/ §y € l,,..,?'g’ <(<J)
iddiBoedd waw. el
Leal ted 3+ 4 v ap (all ibslasd & O)
Ql

i e, ey 3 wads 4o wolex Yo waw.all ¢ (i slome Cecw)

Algorithm Theory, WS 2018/19 Fabian Kuhn 15

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in

time O(t) using O(p?) processors on a weak CERCW machine

Proof:
* Strong: largest value wins, weak: only concurrently writing 0 is OK

onc. | wauls o wmlex allc : £;=(v;=x , 4:=c
\V& q;,) mlg gtl £3, Vl‘/ VJ" a“l Q} (ﬂ%&m& \(c‘))
\4 ‘{7=‘Q;=(0“0(a;'-‘—'a; '“&QVl
{ vz da {0
6(% -es‘-=0

doc woks b g = £i=1

Algorithm Theory, WS 2018/19 Fabian Kuhn 16

FREIBURG

Computing the Maximum

UNI

Given: n values
Goal: find the maximum value

Observation: Thejgax\ij}um{%j\ bﬁe?bcon?@ytecil:sﬁ parallel by using a

—

bi ary@e.]?
\ \ / \ / \ v
T E;)/ & %D Y - XEEEZJ PRA M
-
\(—ﬂ/ lis) T = 0>
\
L \ @/ = O(/o)

Algorithm Theory, WS 2018/19 Fabian Kuhn 17

Computing the Maximum

UNI
FREIBURG

m

Observation: On a strong CRCW machine, the maximum of an
values can be computed in O(1) time using n processors

Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers
between 1 and y/n can be computed in time 0(1) using O(n) proc.

Proof:

We have y/n memory cells f;, ..., f s for the possible values
—_——

Initialize all f; == 1

For the n valueSﬂ, ..., X, Processor j setsél :=¥O

— Since only zeroes are written, concurrent writes are OK

Now, f; = 0 iff value i occurs at least once
Strong CRCW machine: max. value in time 0 (1) w. 0(y/n) proc.
Weak CRCW machine: time 0 (1) using O(n) proc. (prev. lemma)

Algorithm Theory, WS 2018/19 Fabian Kuhn 18

<

UNI

Computing the Maximum 1, ., n

FREIBURG

Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using
O (n) processors on a weak CRCW machine.

= -1 -7] \
Proof: A
%

log, n

* First look at highest order bits

* The maximum value also has the maximum among those bits
* There are only \/n possibilities for these bits

log, n

* max. of highest order bits can be computed in O(1) time

log, n

* For those with largest highest order bits, continue with

log, n

next block of bits, ...

Algorithm Theory, WS 2018/19 Fabian Kuhn 19

UNI

FREIBURG

Prefix Sums IAwINSASARNIRY)

—————

* The following works for any associative binary operator @:

associativity: (a®b)Dc = aP(bDc)

All-Prefix-Sums: Given a sequence of n values aq, ..., a,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:
=

S1,S2,...,S, = a1, a1Da,,a;Da,Das,...,a;D - Da,

* Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3

S1,.,Sg = 34, W N,1S 16,22, 25

Algorithm Theory, WS 2018/19 Fabian Kuhn 20

Computing the Sum

UNI
FREIBURG

* Let'sfirstlookats,, = a;®Da,d - Da,

* Parallelize using a binary tree:

Algorithm Theory, WS 2018/19 Fabian Kuhn 21

Computing the Sum

Lemma: The sum s, = a;Da,® --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O (n).

Proof:

Corollary: The sum s,, can be computed in time O(logn) using

O(n/logn) processors on an EREW PRAM.
Proof:

* Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

Algorithm Theory, WS 2018/19 Fabian Kuhn 22

UNI
f

FREIBURG

Getting The Prefix Sums s.=suy ™=

—

UNI
f

FREIBURG

* Instead of computing the sequence s4, s>, ..., S, let’s compute
71, o,y = 0,81,85, ..., 51 (0: neutral element w.r.t. @)

—_———
r, .., =0,a,a1Da,, ..., a;D - Da,,_4

* Together with s,,, this gives all prefix sums

* Prefixsumr; =s;_1 =a,D - Da;_q:

©)
© ©

© ©. (@) ©

@ (& @ (@ @ (@ @ (@
@ @@ @ @ We @ & we & & we e

($13) ..

Algorithm Theory, WS 2018/19 Fabian Kuhn

Getting The Prefix Sums

UNI
f

FREIBURG

Claim: The prefixsumr; = a,® --- Da;_4 is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing a;
such that v is in the right sub-tree of u.

Algorithm Theory, WS 2018/19 Fabian Kuhn 24

UNI

Computing The Prefix Sums

FREIBURG

For each node v of the binary tree, define r(v) as follows:

* r(v)isthe sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of u.

. r(w)
For a leaf node v holding value a;: r(v) = r; = s;

i—1
o Rtv)
For the root node: r(root) = 0 @W\ é\
éo\r\a” othernodesv: 4 g9’ visthe right child of u:

() (u has left child w)
*/-4(W v is the left child of u: /%(
r(w) =ru)

@ W =W +3

(S: sum of values in
sub-tree of w)

Algorithm Theory, WS 2018/19 Fabian Kuhn 25

UNI

Computing The Prefix Sums

FREIBURG

* leaf node v holdingvalue a;: r(v) =r; = s;_4

* root node: r(root) =0

* Node v is the left child of u: r(v) = r(w)

* Node vis theright child of u: r(v) = r(u) +S
— Where: S = sum of values in left sub-tree of u

Algorithm to compute values r(v):

“m—

1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time O(logn) with O(n) total work

2. Compute values r(v) top-down from root to leaves:

——

— To compute the value tg), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed
~— ~—

— Can be done in parallel time O(logn) with O(n) total work

>—<=

Algorithm Theory, WS 2018/19 Fabian Kuhn 26

Example

UNI
FREIBURG

1. Compute sums of all sub-trees
— Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)

— Top-down (starting at the root)

0
52
0 21
IS 3D
0 10 2 34
(19 (1Y) (13 (18
0 11 10 19 21 30 34 43
OIS OO ©
OROLONS I ONOIONOBOBOIONONONOONO
0 >3™1711 10 16 19 21 21 29 30 31 34 38 43 50

Algorithm Theory, WS 2018/19 Fabian Kuhn 27

UNI

. . n fﬂ)& ‘
Computing Prefix Sums ., .« el sues 1= ot

FREIBURG

O(4.)
wett 1, >=0<w)
Theorem: Given a sequence a4, ..., a4, of n values, all prefix sums
S; =a{P - Da; (for1l < i <n)can be computed intime O(logn)
using O(n/logn) processors on an EREW PRAM.

Proof:

* Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

* The same is true for the top-down step to compute the r(v)

 The theorem then follows from Brent’s theorem:

T
T, = 0(n), T = 0(ogn) = Ty < Te _|_?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

—

Algorithm Theory, WS 2018/19 Fabian Kuhn 28

Parallel Quicksort

UNI
f

FREIBURG

— | 5114

* Key challenge: parallelize partition pivot

5(14/18| 8 |19 1|25/17(11| 4 |20/10|26| 2 | 9 |13|23|16
8 1

/5

21| 3
3 11| 4 |10

9 113|{16/18|19|21|25(17(20|26|23

T

* How can we do this in parallel?
* For now, let’s just care about the values < pivot
 What are their new positions

Algorithm Theory, WS 2018/19 Fabian Kuhn 29

Using Prefix Sums

UNI
FREIBURG

* Goal: Determine positions of values < pivot after partitionpivot

/

14(18| 8 (19|121| 3 | 1 |25(17|11| 4 |20|10(26| 2 | 9 |13|23|16

<

- U1

prefix sums

¢

<

O

10/11/11(12

1

@|/213/3/3|4|5|5/5|/6|7|7|8|8

@ partition

5(14/8 | 3|1(11|{4 |10/ 2 | 9 (13|16|18/19|21|25/17|20(26|23

Algorithm Theory, WS 2018/19 Fabian Kuhn 30

Partition Using Prefix Sums

UNI
f

FREIBURG

* The positions of the entries > pivot can be determined in the
same way

* Prefixsums:T; = 0(n), T, = 0(logn)
* Remaining computations: T; = 0(n), T, = 0(1)

 Overall: T, = 0(n), T, = 0(logn)

Lemma: The partitioning of quicksort can be carried out in
parallel in time O(logn) using O (@) processors.
Proof:

By Brent’s theorem: T, < % + T

Algorithm Theory, WS 2018/19 Fabian Kuhn 31

Applying to Quicksort

UNI

FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with
high probability), where

nlogn
Tp=0< pg +10g2n).

Proof:
f{h?“) Hour Sl (ovels

MZ& 4
%)
Remark:

 We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

Algorithm Theory, WS 2018/19 Fabian Kuhn

Other Applications of Prefix Sums

UNI
f

FREIBURG

* Prefix sums are a very powerful primitive to design parallel
algorithms.

— Particularly also by using other operators than “+”
-

Example Applications:

* Lexical comparison of strings

* Add multi-precision numbers

e Evaluate polynomials

* Solve recurrences

* Radix sort / quick sort

e Search for regular expressions

* Implement some tree operations

Algorithm Theory, WS 2018/19 Fabian Kuhn 33

