Repetition Probability Theory

Algorithm Theory WS 2018/19

Fabian Kuhn

Randomized Algorithms

Randomized Algorithms

- An algorithm that uses (or can use) random coin flips in order to make decisions
- randomization can be a powerful tool to make algorithms faster or simpler

First: Short Repetition of Basic Probability Theory

- We need: basic discrete probability theory
- probability spaces, probability events, independence, random variables, expectation, linearity of expectation, Markov inequality
- Literature, for example
- your old probability theory book / lecture notes / ...
- Appendix C of book of Cormen, Rivest, Leiserson, Stein
- http://www.ti.inf.ethz.ch/ew/courses/APC15/material/ra.pdf

Probability Space and Events

Definition: A (discrete) probability space is a pair (Ω, \mathbb{P}), where

- Ω : (countable) set of elementary events
- \mathbb{P} : assigns a probability to each $\omega \in \Omega$

$$
\mathbb{P}: \underline{\Omega} \rightarrow \mathbb{R}_{\geq 0} \quad \text { s.t. } \quad \sum_{\omega \in \Omega} \mathbb{P}(\omega)=1
$$

$$
\Omega
$$

Definition: An event \mathcal{E} is a subset of Ω

- Event $\mathcal{E} \subseteq \Omega$: set of basic events
- Probability of \mathcal{E}

$$
\underline{\mathbb{P}(\mathcal{E})}:=\sum_{\omega \in \mathcal{E}} \mathbb{P}(\omega)
$$

Example: Probability Space, Events
flip (biased) coin \longrightarrow iH,T\}
$\tau_{\text {pol. do get } H \text { is equal to } P}$
experiment: flip coins until we get H

$$
\begin{aligned}
& \Omega=\{\begin{array}{ccc}
\substack{H \\
\vdots \\
e_{0} \\
e_{0} \\
\\
e_{1}} & \begin{array}{l}
\downarrow \\
e_{2}
\end{array} & T T H, \ldots, \\
e_{\infty}
\end{array}, \underbrace{T T \ldots T}_{\infty}\} \\
& \mathbb{P}\left(e_{i}\right)=(1-p)^{i} \cdot p \\
& \mathcal{E}=\left\{e_{i} \mid i \text { is even }\right\} \\
& \sum_{i=0}^{\infty} \mathbb{P}\left(e_{i}\right)=\underbrace{\sum_{i=0}^{\infty}(1-p)^{i}}_{\frac{1}{1-(1-p)}}=p \cdot \frac{1}{p}=1 \\
& \mathbb{\mathbb { R }}(\varepsilon)=\sum_{e_{i} \in \varepsilon} \mathbb{P}\left(e_{i}\right)=\sum_{j=0}^{\infty} \mathbb{P}\left(e_{z_{j}}\right)=\underset{\sim}{p} \sum_{j=0}^{\infty} \underbrace{\left.(1-p)^{2}\right)^{2}}=p \cdot \underbrace{\frac{1}{1-\left(1-p^{2}+p^{2}\right)}}_{\underbrace{\left.(1-p)^{2}\right)^{j}}_{2 p-p^{2}}}=\frac{p}{2 p-p^{2}}=\frac{1}{2-p}
\end{aligned}
$$

Example: Probability Space, Events

$$
\frac{n(l \text { a die }}{\Omega=\{1,2,3,4,5,6\}, \mathbb{P}(1)=\mathbb{P}(2)=\ldots=\mathbb{P}(6)=1 / 6}
$$

$$
\begin{aligned}
& \mathbb{P}\left(\varepsilon_{\text {even }}\right)=1 / 2 \\
& \mathbb{F}\left(\varepsilon_{\text {s, } 6}\right)=1 / 3
\end{aligned}
$$

Toll 2 dice $\Omega=\{(1,1),(1,2), \ldots,(1,6),(2,1), \ldots,(6,6)\} \mathbb{P}((i, j))=\frac{1}{36}$

$$
\begin{aligned}
& A_{=}=\{(1,1),(2,2),(3,3), \ldots,(6,6)\} \quad \mathbb{P}\left(A_{=}\right)=6 \cdot \frac{1}{36}=\frac{1}{6} \\
& A_{\neq}=\Omega \backslash A_{=}=\overline{A_{2}} \quad \mathbb{P}\left(\bar{A}_{=}\right)=1-\mathbb{P}\left(A_{=}\right)=\frac{5}{6}
\end{aligned}
$$

Independent Events
Definition: Events $\mathcal{A} \subseteq \Omega$ and $\mathcal{B} \subseteq \Omega$ are independent ff

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

roll 2 dice
A : first de even $\mathbb{P}(A)=1 / 2$
B : second die is odd

$$
\mathbb{P}(B)=1 / 2
$$

$$
\begin{gathered}
A \cap B=\{(2,1),(2,3),(2,5),(4,1), \ldots,(6,5)\} \\
|A \cap B|=9 \quad \mathbb{P}(A \cap B)=\frac{9}{36}=\frac{1}{4} \\
=\mathbb{P}(A) \cdot \mathbb{P}(B)
\end{gathered}
$$

Random Variables

Definition: A random variable X is a real-valued function on the elementary events Ω

$$
X: \underline{\Omega} \rightarrow \underline{\mathbb{R}}
$$

- We usually write X instead of $X(\omega)$

- We also write

$$
\mathbb{P}(X=x)=\mathbb{P}(\{\omega \in \Omega: \underline{\underline{X}(\omega)=x}\})
$$

Examples:

- $X^{\text {top }}: X^{\text {top }}\left({ }^{6}\right)=1, X^{\text {top }}(2)=2, \ldots, X^{\text {top }}(6)=6$
- $\underline{X^{b o t}}: X^{b o t}(\underline{1})=\underline{6}, X^{b o t}(2)=\underline{5}, \ldots, X^{b o t}(6)=1$
- Note that for all $\omega \in \Omega, X^{\text {top }}(\omega)+X^{\text {bot }}(\omega)=7$
- To denote this, we write $X^{t o p}+X^{\text {bot }}=7$

Indicator Random Variables
A random variable with only takes values $\underline{0}$ and $\underline{1}$ is called a Bernoulli random variable or an indicator random variable. roll a die, rand. var. $Y= \begin{cases}1 & \text { if -add } \\ 0 & \text { ifeven }\end{cases}$

$$
\begin{gathered}
y(1)=1, y(2)=0, y(3)=1, \cdots \\
\mathbb{P}(\underbrace{y=0}_{\varepsilon_{\text {even }}})=\frac{1}{2}
\end{gathered}
$$

Independent Random Variables
Definition: Two random variables X and Y are called independent if

$$
\forall x, y \in \mathbb{R}: \mathbb{P}(X=x \wedge Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

two coin flips (fair coin) Bernoulli riv. X, Y
$X=1 \Longleftrightarrow 1^{\text {st }}$ coin Alp $_{p}$ is H

$$
\mathbb{T}(x=1)=1 / 2
$$

$y=1 \Longleftrightarrow$ exactly one coin flip is H $\mathbb{P}(y=1)=1 / 2$
par. space $\Omega=\{(T, T),(T, H),(H, T),(H, H)\}$

$$
\begin{aligned}
& \mathbb{P}(X=0 \wedge Y=0)=\mathbb{P}((T, T))=\frac{1}{4} \\
& \mathbb{P}(X=0 \wedge Y=1)=\mathbb{P}((T,+1))=\frac{1}{4} \\
& \mathbb{P}(X=1 \wedge Y=0)=\mathbb{P}((H, H))=\frac{1}{4} \\
& \mathbb{P}(X=1 \wedge Y=1)=\mathbb{P}((H, T))=\frac{1}{4}
\end{aligned}
$$

Independent Random Variables

Definition: A collection of andom variables $X_{1}, X_{2}, \ldots, X_{n}$ on a probability space Ω is called mutually independent if

$$
\begin{aligned}
& \forall k \geq 2,1 \leq i_{1}<\cdots<i_{k} \leq n, \forall x_{i_{1}}, \ldots, x_{i_{k}} \in \mathbb{R}: \\
& \mathbb{P}\left(X_{i_{1}}=\underline{\left.x_{i_{1}} \wedge \cdots \wedge X_{i_{k}}=\underline{x_{i_{k}}}\right)=\mathbb{P}\left(X_{i_{1}}=x_{i_{1}}\right) \cdot \ldots \cdot \mathbb{P}\left(X_{i_{k}}=x_{i_{k}}\right)}\right.
\end{aligned}
$$

not the same as pairwise independence
example: 2 coin flips X_{1}, x_{2}, x_{3} Bernoulli riv.

$$
X_{1}=1 \Longleftrightarrow 1^{\text {st }} \text { flip is } H
$$

$$
X_{2}=1 \Longleftrightarrow 2^{\text {id }} \operatorname{flp} \text { is } H
$$

$$
x_{3}=1 \Longleftrightarrow \text { exactly one } H
$$

$$
\mathbb{P}\left(X_{1}=1 \wedge X_{2}=1 \wedge X_{3}=1\right)=0
$$

Expectation
Definition: The expectation of a random variable X is defined as

$$
\mathbb{E}[X]:=\sum_{x \in X(\Omega)} x \cdot \mathbb{P}(X=x)=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)
$$

Example:

- recall: $X^{\text {top }}$ is outcome of rolling a die

$$
\begin{aligned}
& \mathbb{E}\left[X^{t o p}\right]=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=\frac{3.5}{91} \\
& \begin{aligned}
\mathbb{E}\left[\left(X^{t o p}\right)^{2}\right] & =1 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+9 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}+25 \frac{1}{6}+36 \cdot \frac{1}{6}=\frac{91}{6}=15.16 \ldots \\
\mathbb{E}\left[X^{t \varphi} \cdot X^{\text {bot }}\right] & =\frac{1}{6} \cdot(1 \cdot 6+2 \cdot 5+3 \cdot 4+4 \cdot 3+5 \cdot 2+6 \cdot 1) \quad \text { Remark } \\
& =\frac{56}{6}=9.33 \ldots
\end{aligned} \\
& \mathbb{E}[X \cdot Y] \neq \mathbb{E}]
\end{aligned}
$$

Expectation: Examples

Sums and Products of Random Variables

Linearity of Expectation:

For random variables X and Y and any $c \in \mathbb{R}$, we have

$$
\begin{aligned}
& \mathbb{E}[\boldsymbol{c X}]=\boldsymbol{c} \cdot \mathbb{E}[X] \\
& \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
$$

- holds also if the random variables are not independent

Product of Random Variables:
For two independent random variables X and Y, we have

$$
\underline{\mathbb{E}[\boldsymbol{X} \cdot \boldsymbol{Y}]=\mathbb{E}[\boldsymbol{X}] \cdot \mathbb{E}[\boldsymbol{Y}]}
$$

Sums and Products of Random Variables
Linearity of Expectation:
For random variables X and Y and any $c \in \mathbb{R}$, we have

$$
\begin{aligned}
& \mathbb{E}[c X] \quad=c \cdot \mathbb{E}[X], \quad\lfloor\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \\
& \mathbb{E}[X+Y]=\sum_{x, y}(x+y) \cdot \mathbb{R}(X=x, Y=y) \quad(\text { def } f \text {. } \text { exp. }) \\
& =\sum_{x} \sum_{y} x \mathbb{T}\left(x_{=x,}, Y=y\right)+\sum_{y} \sum_{x} y \mathbb{T}(X=x, Y=y) \\
& =\underbrace{\sum_{x} x \cdot \sum_{=\mathbb{T}(X=x)}^{\sum_{y} \mathbb{P}(X=x, Y=y)}}_{=\mathbb{E}[X]}+\underbrace{\sum_{y} y \cdot \underbrace{\sum_{x} \mathbb{P}(X=x, y)}_{x}, Y_{=y})}_{=\mathbb{E}[Y]}
\end{aligned}
$$

Sums and Products of Random Variables
Product of Random Variables:
For two independent random variables X and Y, we have

$$
\begin{aligned}
& \mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y] \\
& \mathbb{E}[X \cdot Y]=\sum_{x} \sum_{y} x \cdot y \cdot \underline{P(X=x) \cdot \mathbb{R}(Y=y)} \\
&= \sum_{x} x \cdot \mathbb{R}(X=x) \cdot \underbrace{\sum_{y} y \cdot \mathbb{P}(Y=y)}_{\mathbb{E}[Y]} \\
&= \mathbb{E}[Y] \cdot \underbrace{\sum_{x} x \mathbb{P}(X=x)}_{\mathbb{E}[X]}
\end{aligned}
$$

Linearity of Expectation: Example
Sequence of coin flips: $C_{1}, C_{2}, \ldots \in\{H, T\} \quad\left\{e_{0}, e_{1}, e_{2}, \ldots\right\}$

- Stop as soon as the first H turns up

Random variable \boldsymbol{X} : number of T before first H

$$
\mathbb{F}(X=i)=(1-p)^{i} \cdot p
$$

Indicator random variable $\boldsymbol{X}_{\boldsymbol{i}}(\boldsymbol{i} \geq 1)$:

$$
\mathbb{E}[x]=\sum_{i=0}^{\infty} i \cdot p \cdot(1-p)^{i}
$$

- $X_{i}=1: i^{\text {th }}$ coin flip happens and its outcome is T $\underline{X}=0$: otherwise

$$
\begin{aligned}
& X=X_{1}+X_{2}+X_{3}+\ldots+X_{\infty} \\
& \mathbb{P}\left(X_{i}=1\right)=(1-p)^{i} \quad \mathbb{E}\left[X_{i}\right]=(1-p)^{i} \\
& \mathbb{E}[X]=\mathbb{E}\left[X_{1}+\ldots+X_{\infty}\right] \\
& =\sum_{i=1}^{\infty} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{\infty}(1-p)^{i}=\left(1-p \frac{1}{1-(1-p)}=\frac{1-p}{p}\right. \\
& \text { in. } f \text { exp. }
\end{aligned}
$$

$$
=\frac{i-p}{p}
$$

Markov's Inequality
Lemma: Let X be a nonnegative random variable.
Then for all $\bar{c}>0$

$$
\begin{aligned}
& \operatorname{Var}(X):=\mathbb{E}[\underbrace{\left.(X-\mathbb{E}[X])^{2}\right]}_{Z \geqslant 0} \mathbb{P}(X \geq c \cdot \mathbb{E}[X]) \leq \frac{1}{c} \\
& \mathbb{P}\left((x-\mathbb{E}[x])^{2} \geq c^{2} \cdot \operatorname{Var}(x)\right) \leqslant \frac{1}{c^{2}} \\
& \mathbb{P}(|X-E(X)| \geqslant c \cdot \sigma(X)) \leq \frac{1}{c^{2}} \quad \text { Chebyshev's inequality } \\
& \sigma(X):=\sqrt{\operatorname{Var}(x)} \\
& Q_{\text {stall }} \text { deviation }
\end{aligned}
$$

Conditional Probabilities

For events $\mathcal{A} \subseteq \Omega$ and $\mathcal{B} \subseteq \Omega$, the conditional probability of \mathcal{A} given \mathcal{B} is defined as

$$
\underline{\underline{\mathbb{P}(\mathcal{A} \mid \mathcal{B})}}:=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{B})}
$$

Conditioning on event \mathcal{B} defines a new probability space $\left(\underset{\mathcal{B}}{\mathcal{B}}, \mathbb{P}^{\prime}\right)$

$$
\forall \omega \in B: \mathbb{P}^{\prime}(\omega)=\frac{\mathbb{P}(\omega)}{\underline{\mathbb{P}(\mathcal{B})}}
$$

Two events are independent ${ }_{\text {iff }} \mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

Law of Total Probability / Expectation

Lemma: Let X and Y be two random variables on the same probability space (Ω, \mathbb{P}). We then have

$$
\begin{gathered}
\forall \boldsymbol{x} \in \mathbb{R}: \mathbb{P}(\underbrace{\boldsymbol{X}=\boldsymbol{x}}_{\neq})=\sum_{y \in Y(\Omega)} \mathbb{P}(\underbrace{\boldsymbol{X}=\boldsymbol{x}}_{\nless} \mid \boldsymbol{Y}=\boldsymbol{y}) \cdot \mathbb{P}(\boldsymbol{Y}=\boldsymbol{y}) . \\
\mathbb{E}[X]=\sum_{y \in Y(\Omega)} \mathbb{E}[X \mid Y=y] \cdot \mathbb{P}(Y=y)
\end{gathered}
$$

